
Dimension Selection in Axis-Parallel Brent-STEP Method
for Black-Box Optimization of Separable Continuous

Functions

Petr Pošík
Czech Technical University in Prague

Fac. of Electrical Eng., Dept. of Cybernetics
Technická 2, 16627 Prague 6, Czech Republic

petr.posik@fel.cvut.cz

Petr Baudiš
Czech Technical University in Prague

Fac. of Electrical Eng., Dept. of Cybernetics
Technická 2, 16627 Prague 6, Czech Republic

baudipet@fel.cvut.cz

ABSTRACT

The recently proposed Brent-STEP algorithm was gener-
alized for separable functions by performing axis-parallel
searches, interleaving the steps in individual dimensions in
a round-robin fashion. This article explores the possibility
to choose the dimension for the next step in a more “intel-
ligent way”, i.e. to optimize first along dimensions which
are believed to bring the highest profit. We present here
the results for the epsilon-greedy strategy, and for a method
based on the internals of the Brent-STEP algorithm. Al-
though the proposed methods work better than the round
robin strategy in some situations, due to the marginal im-
provement they bring we suggest the round robin strategy
to be used, thanks to its simplicity.
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•Mathematics of computing → Solvers; Nonconvex
optimization; •Computing methodologies → Contin-
uous space search;
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1. INTRODUCTION
Black-box optimization methods for bounded separable func-
tions of the form

f(x) = a1f1(x1) + . . . + aDfD(xD) (1)

are not studied very often, partially due to the fact that the
real-world problems are only seldom fully separable. Yet,
researchers find it useful to make such methods part of their
hybrid algorithm [9] or algorithmic portfolio [3], as a safe-
guard against separable problems.
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Another reason why these methods are only seldom stud-
ied is a common belief that the solution of separable prob-
lems is simple: one can solve them by decomposing them
to D univariate problems, optimizing one after another in
a sequence. Yet, even in this setting, there are at least two
choices left to be made which may hinder the performance
of the resulting algorithm:

1. Which univariate solver shall one choose?

2. What stopping conditions shall one choose for the in-
dividual univariate solvers?

Regarding the issue no. 1, we may basically choose either a
quickly converging local search algorithm, or a slower global
search algorithm. Which solver is a better choice depends
on the particular univariate function. The dilemma was re-
cently solved to a great extent [2] by creating a hybrid of the
Brent local search method [4] and a global search method
called STEP [8]. In most cases, this hybrid called Brent-
STEP takes the best of both worlds: it converges quickly
on unimodal functions, and still finds the optimum of mul-
timodal functions.

The issue no. 2 is also highly important: the stopping
condition must be set separately for each dimension, i.e. for
each univariate solver, and its optimal setting depends on
the particular combination of the function being optimized
and the chosen solver. However, the most important issue
here is the fact that for the univariate solvers one cannot
use a stopping condition based on the acceptable quality
of the solution as a whole since until the last dimension is
optimized, there will always be at least one dimension with
a far-from-optimal value, making the whole solution look
unfavourably. The practitioner usually has to use some fixed
budget or stagnation stopping criteria for each dimension,
which likely results in wasted resources on the one hand, or
in the inability to locate the optimum precisely on the other
hand.

An obvious, yet not often mentioned solution to this issue
is to interleave the solvers in individual dimensions, i.e. to
make an iteration (a single step) of the solver in dimension
1, then in dimension 2, etc., possibly updating the context
solution if an improvement is found. In [2], this principle was
used to improve the performance of the multivariate Brent-
STEP method. The dimensions were chosen uniformly in a
round-robin (RR) fashion. However, RR strategy may not
be the optimal choice when there are dimensions which are
easier to optimize, and/or bring higher profit than others.
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The goal of this work is to evaluate the possibility of choos-
ing the dimension for the next iteration in a smart way, and
determine whether the results are worth such an effort. In
Sec. 2 we shortly present the optimization algorithms used
in this article. Several methods used to choose the dime-
sion are introduced in Sec. 3 and experimentally compared
in Sections 5, 6 and 7 (while the experiment settings are de-
scribed in Sec. 4). Section 8 summarizes and concludes the
paper.

2. BACKGROUND
A popular algorithm for univariate black-box bounded op-

timization is the method of Brent [4]. It is a variant of golden
section search and quadratic interpolation. In principle, it
maintains a triple of points which bracket a local optimum.
They are interpolated by a quadratic function, and its min-
imum is considered as the next sampling point. If the mini-
mum does not fulfill some basic conditions, a golden section
step is done instead. From the description, it is clear that
Brent’s method is a local search algorithm.
The STEP method [8] iteratively splits the domain into

intervals. In each iteration, it chooses a single interval with
the lowest difficulty and divides it into halves. The difficulty
measure shall express how difficult it should be to improve
the current best-so-far (BSF) solution by sampling from the
respective interval. The measure used in STEP is defined
as the lowest curvature the function would have to have on
the interval such that it passes through both the bound-
ary points and somewhere on the interval reaches a level
fBSF − ǫ, i.e. improves BSF by a non-trivial amount ǫ. It
is thus based on quadratic interpolation similarly to Brent’s
method, but it is used in a completely different way. The
method is global: it eventually performs a complete search of
the whole (discretized) domain; the minimal interval length
is a parameter of the algorithm.
A recently proposed hybrid of these two algorithms, Brent-

STEP [2], searches through the already sampled points (in-
terval boundaries) for such triples of consecutive points which
bracket a local optimum. To each such triple, it fits a
parabola in Brent’s way and estimates its optimum. The
triple with the best estimated optimum is then chosen as a
candidate for Brent’s method; a single Brent’s iteration is
then applied to that triple only if the estimated optimum
improves the BSF solution by ǫ, at least. If the estimated
optimum is not good enough, the algorithm falls back to the
STEP method, i.e. it chooses the interval with the lowest
difficulty and halves it. The algorithm usually behaves like
a local search first (executing Brent’s method often), then
it switches to STEP, until it finds another promising basin
of attraction, where it starts using Brent’s method again.
It shall eventually end up in a similar state as the STEP
method.
Multidimensional versions of Brent’s method and STEP

constructed in the naive way (optimizing one dimension af-
ter another, not interleaved) were compared in [10]. As
expected, Brent’s method was fast on unimodal separable
problems, but failed on multimodal ones, while STEP found
the optimum of both the uni- and multimodal separable
functions reliably, but was an order of magnitude slower.
Both methods had in common, that until the last dimension
started to be optimized, the algorithms showed virtually no
progress at all. The Brent-STEP method and its multi-
dimensional generalization [2] mitigated both these issues

in the same time: the method works for unimodal func-
tions quickly, for multimodal functions reliably, and shows
a progress much sooner during the optimization.

3. DIMENSION SELECTION METHODS
The multivariate Brent-STEP method for separable func-

tions [2] uses the round-robin (RR) strategy to choose the
dimension for the next iteration. We denote this algorithm
as BSrr. There are, however, other possibilities, choosing
the dimension unevenly, hopefully identifying those dimen-
sions which bring higher profit sooner. However, they may
not be easy to design, and one can make a rather huge mis-
take by choosing a bad one.

First, consider the mere STEP method (not Brent-STEP).
In the univariate version, the easiest interval is chosen for the
next split. It seems natural to extend it for the multivariate
version such that the easiest interval across all dimensions is
chosen. The results of this strategy (not shown in this pa-
per) are, however, very disappointing. It turns out that the
interval difficulties are not comparable across dimensions.
The easiest intervals tend to be in the dimensions which do
not have much effect on the overall fitness value; the strategy
thus chooses unpromising dimensions.

In the Brent-STEP algorithm, the estimated minima (aris-
ing from quadratic interpolation of triples of points bracket-
ing the optimum) are comparable across dimensions and can
be used to choose the dimension. This method thus makes
a Brent iteration in the dimension with the most improving
estimate of the minimum; if no such dimension exists, the
method falls back to STEP with the round-robin strategy.
We denote this method as BSqi.

Instead of trying to predict the quality of the sampling
outcome (as done in BSqi), we can track the historical data
and choose the dimension which brought most improvements
in the past. We decided to track the improvement frequency

(IF) in each dimension, i.e. the frequency of the event that
the newly sampled data point improved the BSF solution.
We estimate IF using the exponentially weighted moving
average (EWMA) estimator with damping factor 0.9. The
resulting methods are denoted as Sif and BSif.

One can also view the set of univariate solvers as a kind
of portfolio [1] of cooperating algorithms working towards a
common goal, and in principle we can use here the methods
for selecting an algorithm from a portfolio. We choose here
only a single example of these methods, namely the ǫ-greedy
strategy, which chooses a random dimension with probabil-
ity ǫ, and the most promising dimension with probability
1 − ǫ. We combine it with the IF strategy, giving rise to
Sifeg and BSifeg.

4. EXPERIMENT SETTINGS
We compare the following multivariate algorithms: Srr,

BSrr, Sif, BSif, Sifeg, BSifeg, and BSqi. The capital letters,
S or BS, denote STEP or Brent-STEP method, respectively.
The lowercase letters denote the dimension selection strat-
egy: ’rr’ for round-robin, ’if’ for the EWMA estimate of the
improvement frequency, ’ifeg’ for ’if’ combined with ǫ-greedy
strategy, and ’qi’ for dimension selection based on the pre-
diction of the quadratic interpolation in Brent-STEP.

The value of ǫ which represents a non-trivial amount of
improvement for STEP and Brent-STEP was set to 10−8.
The damping factor in the EWMA estimate of improvement
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Dim.
Alg. 2 3 5 10 20 40

Srr 1.5 1.3 1.4 1.7 1.5 1.9
BSrr 5.2 5.0 4.2 4.2 5.2 9.0
BSqi 11.0 13.0 14.0 20.0 24.0 65.0

Table 1: The time (in miliseconds) per function eval-
uation for various dimensions and algorithms.

frequency was set to 0.9. For the ǫ-greedy strategy, the
probability of choosing random dimension is 0.5. The first
4D evaluations are set as a burn-in phase, where the round-
robin strategy is always applied. Methods are restarted if
an improvement cannot be found for 2000 iterations. The
overall budget was set to 104D evaluations in each run.
The experiments are performed according to [6] on the

benchmark functions given in [5, 7]. The expected run-
ning time (ERT), used as the performance measure, de-
pends on a given target function value, ft = fopt +∆f , and
is computed over all relevant trials as the number of func-
tion evaluations executed during each trial while the best
function value did not reach ft, summed over all trials and
divided by the number of trials that actually reached ft [6,
11].

5. CPU TIMING
Table 1 provides an indication of the CPU timing of our

implementations of some of the benchmarked algorithms.
Srr (STEP with round-robin strategy) is the simplest one
and shall be the fastest. BSrr (Brent-STEP with round-
robin strategy) shall reveal the costs of the hybridization
of STEP with Brent. BSqi (Brent-STEP with the dimen-
sion selected according to the prediction of the quadratic
interpolation) was the most time-consuming method in our
experiments, and shall indicate the costs of using a more
involved dimension selection method.
We have run the algorithms on function f8 without restarts

for at least 30 seconds. The algorithms were implemented
and run using Python 2.7 on a Windows 7 machine with
Intel(R) Core(TM) i7-2670QM CPU @ 2.20GHz with 1 pro-
cessor and 4 cores. The time per function evaluation in
miliseconds is shown in Table 1.

6. RESULTS FOR UNLIMITED BUDGET
The results for the scenario with an unlimited budget

are presented in Figures 1 and 2. The results for non-
separable functions f6-f24 (with the exception of f20 and
f21) are omited from these figures, because (unsurprisingly)
the algorithms are not able to reach the target precision 10−8

and the figures do not display anything interesting.
For the separable functions 1, 2, and 4, we can see 2

groups of methods: the lower (better) values of ERT corre-
spond to the Brent-STEP variants, while the higher (worse)
ERT values belong to STEP variants. This suggests that on
these functions, the hybridization with Brent really improves
STEP. On functions 3 and 5, the two groups of methods have
similar performance. Functions 3 and 4 are separable and
multimodal, and the results confirm that the multivariate
STEP and Brent-STEP methods are perfect match for such
functions. For functions 1, 2, and 5, which are unimodal
with an easy structure, even better solvers exist, but espe-

cially the Brent-STEP algorithm does not have a large gap
from them.

7. RESULTS FOR EXPENSIVE SCENARIO
The results for the expensive scenario (low budget) are

presented in Figures 3, 4, and 5.
The results for separable functions are similar to the un-

limited budget scenario, although the differences are less
pronounced. The only substantial difference is function f2,
where the presented methods actually improve the results of
the best 2009 algorithm (which was not the case for unlim-
ited budget).

Although the presented multivariate STEP and Brent-
STEP methods were not designed for optimization of non-
separable functions, Fig. 3 reveals that there are non-separable
functions (8, 12, 14, 16, 20, 23, 24) for which (some of) the
presented methods provide performance which is not very
far from the methods that take the interactions among vari-
ables into account. There are at least 2 factors contribut-
ing to the explanation of this observation. (1) Many of the
multimodal functions look like unimodal, when levels much
worse than the optimum are considered, so that any form of
local search helps in the initial phases. (2) During the first
n evaluations, more complex methods do not have enough
information required by them to work efficiently.

Looking at the ECDF graphs in Figs. 4 and 5, one can
say that the sweet spot of applying the STEP and Brent-
STEP methods is between 5D and 20D evaluations. The
performance for these budgets is close to or better than the
virtual best algorithm of BBOB 2009, and these budgets
are also sufficient to find the optimum (target level 10−8)
of unimodal separable functions (see Fig. 2). However, to
reach the global optima on multimodal separable functions,
the (Brent-)STEP algorithms need larger budgets, ca. 400D
evaluations.

It can be also stated about the addition of Brent’s com-
ponent into STEP, that while it helps on separable func-
tions, it is usually waste of resources on non-separable ones,
where the STEP variants are not slower than Brent-STEP,
but usually reach higher levels of the proportion of solved
problems.

Regarding the individual dimension-selection strategies,
on seperable functions we did not find any significant dif-
ferences among them. It may be, however, caused by the
BBOB test problems. If they are constructed by using the
same function for all dimensions, it is likely that the individ-
ual line searches will have similar improvement frequency;
moreover, if the functions in all dimensions have similar
range of values, it is also likely, that the optimum estimates
from quadratic interpolation will have similar function val-
ues; it is thus possible that all the presented methods behave
very often as a round-robin strategy.

The differences among dimension selection strategies are
more visible on non-separable functions in higher dimen-
sions. Nevertheless, the non-separable functions are not the
primary target area for the proposed algorithms, and thus
the differences are largely irrelevant here.

8. SUMMARY AND CONCLUSIONS
The recently proposed Brent-STEP method for optimiza-

tion of separable functions is reviewed in this article. Several
dimension selection strategies are proposed as alternatives to
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Figure 1: Unconstrained budget scenario: Expected running time (ERT in number of f-evaluations as log10
value), divided by dimension for target function value 10−8 versus dimension. Slanted grid lines indicate
quadratic scaling with the dimension. Different symbols correspond to different algorithms given in the
legend. Light symbols give the maximum number of function evaluations from the longest trial divided by
dimension. Black stars indicate a statistically better result compared to all other algorithms with p < 0.01
and Bonferroni correction number of dimensions (six). Different symbols correspond to different algorithms
given in the legend. Legend: ○:Srr, ▽:Sif, ⋆:Sifeg, ◻:BSrr, △:BSif, ♢:BSifeg, 9:BSqi

separable fcts 5-D separable fcts 20-D

BSif

BSifeg

BSrr

BSqi

Srr

Sif

Sifeg

best 2009

BSifeg

BSif

BSqi

BSrr

Srr

Sif

Sifeg

best 2009

Figure 2: Unconstrained budget scenario: Empirical cumulative distribution of the number of objective
function evaluations divided by dimension (FEvals/DIM) for 50 targets in 10[−8..2] for separable functions in
5-D and 20-D. The “best 2009” line corresponds to the best ERT observed during BBOB 2009 for each single
target.
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Figure 3: Expensive scenario: Expected running time (ERT in number of f-evaluations as log10 value) divided
by dimension versus dimension. The target function value is chosen such that the bestGECCO2009 artificial
algorithm just failed to achieve an ERT of 10 × DIM. Different symbols correspond to different algorithms
given in the legend. Light symbols give the maximum number of function evaluations from the longest trial
divided by dimension. Black stars indicate a statistically better result compared to all other algorithms with
p < 0.01 and Bonferroni correction number of dimensions (six). Legend: ○:Srr, ▽:Sif, ⋆:Sifeg, ◻:BSrr, △:BSif,
♢:BSifeg, 9:BSqi
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BSifeg
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Srr

BSqi

BSifeg

BSrr
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ill-conditioned fcts multi-modal fcts

best 2009
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BSifeg
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best 2009

Sifeg

Srr

Sif

BSrr

BSqi

BSif

BSifeg

weakly structured multi-modal fcts all functions

best 2009

Sifeg

Srr

Sif

BSrr

BSqi

BSif

BSifeg

best 2009

Srr

Sifeg

Sif

BSqi

BSifeg

BSrr

BSif

Figure 4: Expensive scenario: Empirical cumulative distribution of the number of objective function evalu-
ations divided by dimension (FEvals/DIM) for all functions and subgroups in 5-D. The targets are chosen

from 10[−8..2] such that the bestGECCO2009 artificial algorithm just not reached them within a given budget
of k × DIM, with k ∈ {0.5,1.2,3,10,50}. The “best 2009” line corresponds to the best ERT observed during
BBOB 2009 for each selected target.
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Figure 5: Expensive scenario: Empirical cumulative distribution of the number of objective function evalu-
ations divided by dimension (FEvals/DIM) for all functions and subgroups in 20-D. The targets are chosen

from 10[−8..2] such that the bestGECCO2009 artificial algorithm just not reached them within a given budget
of k × DIM, with k ∈ {0.5,1.2,3,10,50}. The “best 2009” line corresponds to the best ERT observed during
BBOB 2009 for each selected target.
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the default round-robin strategy, and experimentally com-
pared.
We confirmed that the hybridization with Brent’s method

is benefitial for STEP: Brent-STEP is faster on separable
functions than STEP. This does not hold for non-separable
problems where STEP is usually better. Nevertheless, there
are better solvers for non-separable functions, thus we stay
with our recommendation to use Brent-STEP method. We
further recommend to use the round-robin strategy for di-
mension selection: we have not found any significant ad-
vantage in using a more complicated dimension selection
method, but we have found that some of these more com-
plicated methods may worsen the results in certain cases.
In the initial phases of the search, the proposed inter-

leaved axis-parallel methods may be suitable even for the
non-separable functions. This can be used e.g. as a part of
an initialization procedure of another subsequent solver.
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