Differential Evolution with a Repair Method to Solve
Dynamic Constrained Optimization Problems

Maria-Yaneli Ameca-Alducin, Efrén Mezura-Montes and Nicandro Cruz-Ramirez
Artificial Intelligence Research Center, University of Veracruz
Xalapa, Veracruz, México
yaneliameca@gmail.com, {emezura,ncruz}@uv.mx

ABSTRACT

An algorithm inspired in two differential evolution variants is
proposed to solve Dynamic Constrained Optimization Prob-
lems (DCOPs). It is also added a repair method based on
the differential mutation, which does not require feasible
solutions as reference. This approach is compared against
state-of-the-art algorithms to solve DCOPs. Different per-
formance measures are employed in the tests to show the
competitiveness of our proposal at different change frequen-
cies.

CCS Concepts

eComputing methodologies — Genetic algorithms;
eMathematics of computing — Continuous functions;

Keywords

Differential Evolution; Constraint-handling; Dynamic op-
timization

1. INTRODUCTION

A DCOP can be seen as a search problem where its fitness
landscape and feasible region change through time. Evolu-
tionary algorithms (EAs) were not designed to deal with dy-
namic search spaces because they lack mechanisms to detect
search space changes [11, 12]. Without loss of generality, a
DCOP can be defined as to:

Find &, at each time ¢, which:

. = 4
i-‘EFItnC_H[lL,U] (%)

where t € N7 is the current time,

[L7 U] = {f: (ml,mg, ...,ID)lLi S xX; S Ui,i =1.. D}

is the search space,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

GECCO 15, July 11 - 15, 2015, Madrid, Spain
© 2015 ACM. ISBN 978-1-4503-3488-4/15/07. .. $15.00
DOL http://dx.doi.org/10.1145/2739482.2768471

1169

subject to:

F,={z|Z € [L,U],g:(Z,t) <0,i=1...m,
h]'(fvt) =0,7= lp}

which is called the feasible region at time ¢. VZ € F; if there
exists a solution &* € F} such that f(2*,t) < f(&,t), then
Z* is called a feasible optimal solution and f(Z*,t) is called
the feasible optimal value at time t¢.

Four types of DCOPs are defined: i) a static objective
function and static constraints (i.e. a static constrained op-
timization problem), ii) a dynamic objective function and
static constraints, iii) a static objective function and dy-
namic constraints, and iv) a dynamic objective function and
dynamic constraints.

The Genetic Algorithm (GA) is the most popular EA to
solve DCOPS, where different mechanisms to deal with fit-
ness landscape and feasible region changes have been consid-
ered, such as diversity maintenance and repair methods [3, 4,
11, 12]. Other meta-heuristics like the Dynamic Constrained
T-Cell (DCTC) [2], and the Gravitational Search Algorithm
(GSA) [14] were proposed to solve DCOPs as well. Differen-
tial Evolution (DE) has been also recently adapted to deal
with DCOPs [13]. As it was mentioned above, a popular
mechanism added to an EA when solving DCOPs is the re-
pair method, which requires feasible solutions as reference to
convert infeasible solutions into feasible ones. The main mo-
tivation of this work lies on proposing an algorithm based on
a scarcely EA used for DCOPs, DE in our case, but with the
novelty of combining two of its variants (DE/rand/1/bin and
DE/best/1/bin) and also a novel but simple repair method
which does not require feasible solutions to work. A set of
experiments focused in the frequency of the change in the
search space is carried out, because the repair method has
an important role in the algorithm’s recovery after a change.
The results obtained are compared against different state-
of-the-art approaches to solve DCOPs.

The rest of the paper is divided as follows: Section 2 in-
troduces the proposed algorithm. Section 3 presents the ex-
periments and results obtained by the algorithm . Finally,
Section 4 includes the conclusions and future research.

2. PROPOSED ALGORITHM

The proposed algorithm is based on the so-called Differ-
ential Evolution with Combined Variants (DECV), origi-
nally proposed to solve static constrained optimization prob-
lems [8]. A preliminary version adapted to solve DCOPs,
called dynamic differential evolution with combined variants
(DDECV) was presented in [1]. The elements of the algo-

rithm are the following:

i) The change detection mechanism consists on solution re-
evaluation [15]. At each generation, two solutions are evalu-
ated and their objective function values and constraints val-
ues are compared against their previous values. If any value
is different, this indicates that a change has been detected.

ii) The exploration promotion mechanism is activated after
the change detection mechanism, and here is where the two
DE variants are switched because DDECV starts by using
DE/rand/1/bin. However, after the change detection me-
chanism, DE/best/1/bin is adopted for a number of genera-
tions, while the F value is increased during the same period
of time to promote exploration [8].

iii) Constraint-handling. Three feasibility rules [5] are used
to deal with the constraints: (1) Between two feasible so-
lutions, the one with the best objective function value is
chosen, (2) between a feasible solution and an infeasible so-
lution, the feasible one is chosen, and (3) between two in-
feasible solutions, the one with the lowest sum of constraint
violation is chosen.

iv) Random-immigrants. A number of randomly generated
solutions called immigrants [16] are inserted into the current
population at the end of each generation. The number of
immigrants is increased after a detected change and returns
to its original value after that.

v) Convergence promotion. A hill-climber-like local search
operator [7] is applied to a randomly chosen solution from
the current population by a determined number of iterations.
The final obtained solution replaces the worst one in the
current population.

Recalling from the DCOPs literature, the algorithms that
present a competitive performance are those with a repair
method as GA+ Repair [11], DE + Repair [13] and GSA +
Repair [14]. The use of repair methods has been employed as
constraint-handlers. The repair method consists in the use
of a set of feasible solutions that serve as reference to con-
vert infeasible solutions of the current population in feasible
solutions [9, 11, 13, 14].

Unlike the above mentioned way to work, our repair method
does not use feasible solutions, it is a resampling approach
based on the differential mutation operator. For each infea-
sible solution, three new and temporal solutions are gener-
ated at random with the only aim to apply the differential
mutation operator (see line 4 in Algorithm 1) as if a mu-
tant vector is created in DE. At each generation, before the
selection between the parent and offspring solutions, if the
offspring is infeasible, the repair method is applied until it
is repaired or Repair Limit attempts are computed. The
details of the repair method can be seen in Algorithm 1.

It is important to remark that DDECV 4 Repair does not
consider the convergence promotion mechanism (i.e. it does
not use the local search operator). The details of DDECV +
Repair are shown in Algorithm 2, where the repair method
is remarked in boldface.

3. EXPERIMENTS AND RESULTS

3.1 Experimental setup

DDECV + Repair was tested on the 18 functions of the
G24 benchmark, whose details can be found in [11, 12]. The
parameter settings for the benchmark problems were the
following: number of runs = 50, number of changes = 12,
change frequency at 500, 1000 and 2000 evaluations, the

1170

objective function severity was medium (k
constraint severity was medium (S = 20).

The results obtained by DDECV + Repair were compared
against algorithms from the state-of-the-art to solve DCOPs:
i) a Genetic Algorithm (GA) with elitism (GAEIit) [11], ii) a
GA with random immigrants (RIGAEIit) [4], iii) a GA with
hypermutation (HyperMElit) [3], iv) a GA with a repair
method (GA + Repair) [11], v) a differential evolution with
a repair method (DE + Repair) [13], vi) the gravitational
search algorithm with a repair method (GSA + Repair) [14],
and vii) the original DDECV [1]. DE + Repair and GSA +
Repair were compared only with 1000 evaluations as change
frequency because no results were found for the remaining
frequencies.

The parameter values used by DDECV and DDECV +
Repair were taken from [1]: NP =25 CR=0.8399, F= 0.9644
F (after change)= 1.0820, Immigrants before change= 5,
Immigrants after change = 3, iterations for local search =8
(just for DDECV) and Repair_Limit=100 (just for DDECV
+ Repair).

The performance measures adopted in this work were the
following;:

offtine error [11, 14] is defined as the average of the sum
of errors in each cycle divided by the sum of the number of
cycles. The offline error is always greater than or equal to
Z€ero.

The recovery rate (RR) is used to analyze how quickly an
algorithm recovers after a change and starts converging to
the new best solution before the next change occurs. Such
new solution is not necessarily the global optimum. The RR
value would be 1 in the best case where the algorithm is able
to recover and converge to the best solution immediately
after a change, and closer to zero where the algorithm is
unable to recover.

The absolute recovery rate (ARR) is similar to the RR,
but is used to analyze how fast is an algorithm to start
converging to the global optimum before the next change
occurs. The ARR value would be 1 in the best case when
the algorithm is able to recover and converge to the global
optimum immediately after a change, and would be zero in
case the algorithm is unable to recover.

For more details about these measures the reader is re-
ferred to [11, 12].

0.5) and the

3.2 Results

The experiments were divided as follows:

i) An indirect comparison, where the results of other al-
gorithms were taken from [1, 10, 13, 14] and compared with
our proposal by using offline error. The statistical validation
was made with the non-parametric 95%-confidence Kruskal-
Wallis (KW) test and a post-hoc test (Bonferroni Dunn) [6].
Table 1 shows the results of the KW test, where the results
obtained by DDECV + Repair are compared against other
algorithms by using different change frequencies (500, 1000,
and 2000 evaluations) and a medium severity of change (i.e.,
k=0.5 and S=20).

At 500, 1000 and 2000 evaluations for a change, DDECV
+ Repair outperformed the first four algorithms, including
GA + Repair, with the exception of DDECV. Particularly
for a change frequency of 1000 evaluations, DDECV + Re-
pair performed in a similar way as DE + Repair, GSA +
Repair and DDECV. Figure 1 shows the results of the Bon-
ferroni Dunn post-hoc test, which confirm the findings in

Frequency 500 evais

A

Frequency 500 evals

)
+

i)

Froquency 2000 evals

Frequency 1000 ovals

iv)

Frequency 2000 evals

v)

vi)

Figure 1: Mapping of the RR/ARR scores of GAElit, RIGAElit, HyperMElit, GA + Repair, DDECV and DDECV + Repair to the RR-ARR
diagram for three change frequencies: i) 500 evaluations, iii) 1000 evaluations, and v) 2000 evaluations. If a point is closer to the right hand-side
area of the graph, it indicates a faster recovery. Moreover, if the point lies on the diagonal line, the algorithm has been able to recover from
the change and converge to the new global optimum. Post-hoc Bonferroni test results based on the offline error values with different change
frequencies are showed in: ii) 500 evaluations, iv) 1000 evaluations and vi) 2000 evaluations.

Table 1.

ii) A direct comparison, where the algorithms from the
specialized literature to solve DCOPs were implemented and
their corresponding performances were evaluated by using
RR and ARR. To improve the results in the GAEIit and
GA + Repair algorithms, a change detection mechanism
employed in DDECV [1] was added. Figure 1 depicts the
RR and ARR diagrams of the following algorithms: GAElit,
RIGAEIit, HyperMElit, GA 4+ Repair, DDECV and DDECV
+ Repair in three change frequencies (500, 1000 and 2000
evaluations) and a medium change severity (i.e., k=0. 5 and
S=20). Such results suggest that DDECV + Repair recov-
ers faster than the compared algorithms, including DDECV,
particularly when the change is more frequent (i.e. every 500
evaluations). Furthermore, DDECV + Repair provided the
best recovery to the global optimum after a change, regard-
less of its frequency.

4. CONCLUSIONS

An EA based on two variants of differential evolution
(DE/rand/1/bin and DE/best/1/bin), coupled with a re-
sampling-based feasible-solutions-free repair method inspired
in the differential mutation operator, was proposed to solve
DCOPs. Two experiments based on three performance mea-
sures (offline error, recovery rate and absolute recovery rate)
with three change frequencies were carried out. Seven al-
gorithms were used for comparison purposes. The overall
results showed that DDECV + Repair outperformed most
of them based on the offline error measure, regardless of
the change frequency. Particularly with 1000 evaluations

for a change, it was just comparable with respect to three
algorithms (the original DDECV, DE + Repair and GSA +
Repair). However, the main advantage of the proposed algo-
rithm was its capability to recover faster than others after a
change, mostly in frequent changes (i.e. at every 500 evalu-
ations). It is important to remark that, unlike other repair
methods, the repair method proposed in this work does not
require feasible solutions to operate.

The future work considers using other measures in order to
verify the performance of DDECV + Repair. Also, different
values for the severity of the change will be included in the
tests.

Algorithm 1 Repair_Method

Require: ;¢ {trial vector}
1: counter =0
2: while #; ¢ is infeasible and counter < Repair_Limit do
3 Generate three random vectors (@,0,¢, Ur1,¢ and Ur2,G)
4 ;¢ = Uro,¢ + F(Ur1,g — Ur2,G)
5: counter = counter + 1
6
7

: end while
: Return ;¢

5. ACKNOWLEDGMENTS

The first author acknowledges support from the Mexican
Council for Science and Technology (CONACyT) to pursue
graduate studies at the University of Veracruz. The sec-
ond author acknowledges support from CONACyT through
project No. 220522.

1171

Table 1: Offline error comparison of DDECV+Repair against other algorithms with three change frequencies, k=0.5 and S=20. “X(+)” means

that the algorithm in the corresponding column outperformed algorithm X based on the 95%-confidence KW test.

“X(=)” means that the

algorithm in the corresponding column was outperformed by algorithm X based on the 95%-confidence KW test. “NA” means not available.

. RIGAEIlit HyperMElit GA 4+ Re- DE + Re- GSA + Repair DDECV + Re-
Freq.
req. | GAElLt (1) o) 3) pair (4) pair (5) (6) DDECV (7) pair(8)
500 7(*), 8(—) 7(*), 8(—) 7(*)7 8(—) 8(—) NA NA 1(+), 2(+), 3 1(+)7 2(+)’ 3(+)7 4
1000 | 6, 7¢), 8(=) 6(*)7 7(*)’ 8(—) 6(*)7 7(*)7 8(—) 6(*)’ 7(=), 8(=) 1(+)’ 2(), 3(+)7 4 1) 2(+)7 3(+)’ 4(+) 1(+)7 2(+), 3(+)7 4(+)
2000 7(*)1 8(—) 7(*), 8(—) 7(*)7 8(—) 8(—) NA NA 1(+)’ 2(+)’ 3 1(+)7 2(+)" 3(+)7 4
Algorithm 2 DDECV+Repair algorithm Swarm and Evolutionary Computation, 1(1):3-18,
1. G=0 2011.
2: Create a randomly-generated initial population #; g Vi, i =

® N ook e

11:
12:
13:
14:
15:
16:

17:
18:
19:

21:
22:

23:
24:

1,...,NP

. BEvaluate each @; ¢ Vi,i=1,..., NP

eval = eval + NP

: while eval < Max_eval do

for i < 1 to NP do
if i=1o0r ¢ = NP/2 then
Change_detection_Mechanism (Z;,c)
eval = eval + 1
end if
Exploration_promotion_mechanism
if i; ¢ is infeasible then
Repair_Method(u;,¢) {Algorithm 1}
end if
eval = eval + 1
if f(u;) is better than f(Z;) based on the feasibility
rules then
Tig+1 = Ui,G
else
Tig+1 = TG
end if
end for
Add NI immigrants to the current population and evaluate
them
eval = eval + NI
G=G+1
end while

2]

8]

[4]

[5]

REFERENCES

M.-Y. Ameca-Alducin, E. Mezura-Montes, and

N. Cruz-Ramirez. Differential evolution with combined
variants for dynamic constrained optimization. In
Evolutionary Computation (CEC), 2014 IEEE
Congress on, pages 975-982, July 2014.

V. Aragén, S. Esquivel, and C. Coello. Artificial
immune system for solving dynamic constrained
optimization problems. In E. Alba, A. Nakib, and

P. Siarry, editors, Metaheuristics for Dynamic
Optimization, volume 433 of Studies in Computational
Intelligence, pages 225-263. Springer Berlin
Heidelberg, 2013.

H. Cobb. An investigation into the use of
hypermutation as an adaptive operator in genetic
algorithms having continuous, time-dependent
nonstationary environments. Technical report, Naval
Research Lab Washington DC, 1990.

H. Cobb and J. Grefenstette. Genetic algorithms for
tracking changing environments. In S. Forrest, editor,
ICGA, pages 523-530. Morgan Kaufmann, 1993.

K. Deb. An efficient constraint handling method for
genetic algorithms. Computer Methods in Applied
Mechanics and Engineering, 186(24):311-338, 2000.
J. Derrac, S. Garcia, D. Molina, and F. Herrera. A
practical tutorial on the use of nonparametric
statistical tests as a methodology for comparing
evolutionary and swarm intelligence algorithms.

1172

(13]

(14]

S. Hernandez, G. Leguizamon, and E. Mezura-Montes.
A hybrid version of differential evolution with two
differential mutation operators applied by stages. In
Evolutionary Computation (CEC), 2013 IEEE
Congress on, pages 2895-2901, 2013.

E. Mezura-Montes, M. E. Miranda-Varela, and R. del
Carmen Gémez-Ramén. Differential evolution in
constrained numerical optimization. an empirical
study. Information Sciences, 180(22):4223-4262, 2010.
7. Michalewicz and G. Nazhiyath. Genocop iii: a
co-evolutionary algorithm for numerical optimization
problems with nonlinear constraints. In Fvolutionary
Computation, 1995., IEEFE International Conference
on, volume 2, pages 647-651 vol.2, Nov 1995.

T. Nguyen and X. Yao. Detailed experimental results
of ga, riga, hyperm and ga-+repair on the g24 set of
benchmark problems. Technical report, School
Comput. Sci., Univ. Birmingham, Birmingham, U.K.,
2010. available at: http://www.staff.livjm.ac.uk
/enrtngul /Papers/DCOP fulldata.pdf.

T. Nguyen and X. Yao. Continuous dynamic
constrained optimization: The challenges. IEEFE
Transactions on Evolutionary Computation,
16(6):769-786, 2012.

T. Nguyen and X. Yao. Evolutionary optimization on
continuous dynamic constrained problems - an
analysis. In S. Yang and X. Yao, editors, Fvolutionary
Computation for Dynamic Optimization Problems,
volume 490 of Studies in Computational Intelligence,
pages 193-217. Springer Berlin Heidelberg, 2013.

K. Pal, C. Saha, and S. Das. Differential evolution and
offspring repair method based dynamic constrained
optimization. In B. Panigrahi, P. Suganthan, S. Das,
and S. Dash, editors, Swarm, Evolutionary, and
Memetic Computing, volume 8297 of Lecture Notes in
Computer Science, pages 298-309. Springer
International Publishing, 2013.

K. Pal, C. Saha, S. Das, and C. Coello-Coello.
Dynamic constrained optimization with offspring
repair based gravitational search algorithm. In
Evolutionary Computation (CEC), 2013 IEEE
Congress on, pages 2414-2421, 2013.

H. Richter. Detecting change in dynamic fitness
landscapes. In Evolutionary Computation, 2009. CEC
’09. IEEE Congress on, pages 1613-1620, 2009.

Y. Shengxiang. Memory-based immigrants for genetic
algorithms in dynamic environments. In Proceedings of
the 2005 conference on Genetic and evolutionary
computation, GECCO ’05, pages 1115-1122, New
York, NY, USA, 2005. ACM.

