
Exploiting the Relationship Between Structural Modularity
and Sparsity for Faster Network Evolution

Anton Bernatskiy
Dept. of Computer Science

University of Vermont
anton.bernatskiy@uvm.edu

Josh C. Bongard
Dept. of Computer Science

University of Vermont
josh.bongard@uvm.edu

ABSTRACT
A network is structurally modular if it can be divided into
tightly connected groups which are weakly connected or dis-
connected from each other. Such networks are known to
be capable of fast evolutionary adaptation, which makes
modularity a highly desired property of networks involved
in evolutionary computation. Modularity is known to cor-
relate positively with another network parameter, sparsity.
Based on this relationship, we hypothesize that starting evo-
lution with a population of sparse networks should increase
the modularity of the evolved networks. We find that this
technique can enhance the performance of an existing tech-
nique for modularity evolution, multiobjective performance-
connection cost (P&CC) optimization, and enable a multi-
objective algorithm which maximizes performance and mini-
mizes time since last mutation to produce modular solutions
almost as efficiently as the P&CC optimization does.

Categories and Subject Descriptors
G.1.6 [Optimization]: Global optimization; G.2.2 [Graph
theory]: Graph algorithms

Keywords
Genetic algorithms; Theory; Working principles of evolu-
tionary computing

1. INTRODUCTION
Many problems in engineering can be reduced to global

optimization of a function f(G) mapping a set of networks
(possibly directed and/or weighted) G onto some set of real
numbers R ⊂ R. Suppose G is a set of all possible networks
with N nodes and up to ∼ N2) edges. Further, each edge
has one of C possible weights associated with it (absent con-
nections are defined to have a weight of 0). There are on

the order of CN2

such networks. In the worst case, solving
the optimization problem involves computing f(G) for all
G ∈ G, i.e. an exponential number of operations.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO’15 Companion, July 11–15, 2015, Madrid, Spain
c© 2015 ACM. ISBN 978-1-4503-3488-4/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739482.2768472

Two approaches are utilized to cope with this complexity.
First, instead of looking for the global optimum, a reason-
ably good solution which can be obtained in a reasonable
time is sought. To this end, metaheuristic methods such
as evolutionary computation are utilized. The second ap-
proach involves constraining or biasing search towards some
small subset of G. The subset is selected heuristically in
such a way that it is likely to contain or to be close to some
reasonably good solution.

Indirect encodings (e.g. [11]) and additional optimization
objectives (e.g. [5]) have been developed which bias the
search towards small subsets of the search space. These
methods perform well on a wide range of tasks.

A lot of attention has been attracted to the subset of net-
works possessing structural modularity, a widespread prop-
erty of biological networks [7]. A network is modular if it can
be divided into subgraphs with strong connections within
them, but with little or no connections between them. It
has been shown that many practical tasks have modular so-
lutions which are reasonably good [3, 4, 5, 6, 8]. It was also
found that modular solutions evolve more rapidly than their
nonmodular counterparts in nonstationary environments [6]
and that they generalize better [1, 12].

A variety of techniques for evolving modular networks has
been suggested [5, 6, 8, 4]. One trait that many of these
techniques share is an explicit [5] or implicit [6] bias of the
evolutionary process towards sparse networks.

Clune et al [5] established that modularity evolves if con-
nection cost is minimized while the network performance is
maximized in a Pareto front-based multiobjective evolution.
They also demonstrated that such an algorithm produces
solutions with higher fitness compared to the case when the
performance of a network is the only objective, and that this
fitness was arrived at in fewer generations. They concluded
that the influence of the connection cost pushed the popu-
lation towards the region of the search space with sparser
networks. Since sparse networks have less connections and,
correspondingly, weights to be optimized, they adapt more
rapidly than dense networks.

To explain the increase in modularity, they examined the
search space and found a negative correlation between net-
work density and modularity both in random and in highly
fit networks.

Alternatively, one can think of this in terms of graph sets:
the bias towards sparse networks causes search to optimize
fitness on the set of sparse networks first, and this set is
much smaller than the set of all possible networks. Due to
the relationship between modularity and sparsity mentioned

1173

http://dx.doi.org/10.1145/2739482.2768472

above, the set of sparse networks happens to contain many
modular networks, which makes this approach even more
efficient.

In [5], evolution was initialized with a population of net-
works generated by assigning weights to all possible connec-
tions at random. Such networks are dense. From the opti-
mization point of view, they are probing the unconstrained
set of networks, which is inefficient. They are also not likely
to be modular. Plots of density versus modularity versus
generation provided in [5] show that it takes a number of
generations for the population to reach a region of the search
space with sparser and more modular networks.

The fact that the population was seeded with networks
with O(N2) connections leads us to believe that this tran-
sient becomes longer for larger networks. Here we show that
seeding evolution with a population of sparse networks can
remove this transient, which results in more rapid adapta-
tion and increased modularity, especially for larger values
of N . We also demonstrate that, given that the evolution
starts with a population of sparse networks, it is possible to
replace the connection cost objective with another objective
of minimizing the time since the last mutation without sig-
nificantly affecting the speed of adaptation. This, however,
comes with the expense of destabilizing the process of modu-
larity growth, resulting in a decrease of the final modularity
metric Q.

2. METHODS
Here we describe the particular network optimization prob-

lem chosen for testing our hypothesis and the algorithms in-
volved. All materials for replicating this work are available
at http://git.io/vUmrG.
Task: We use evolution of attractors in boolean networks as
an example problem for our study. The networks and their
dynamic are identical to the ones described in [6].

Boolean networks are dynamical systems which are often
used as simple models of gene regulatory networks (GRNs)
found in biological cells. The state of each gene j is repre-
sented by a variable sj which can be equal to either −1 or
1. Complete state of the network at time t is a vector of
states of N individual genes, s(t) = (s1(t), s2(t), ..., sN (t)).
It determines the state of the network at the next time step
as follows:

si(t+ 1) = σ

[
N∑

j=1

aijsj(t)

]
. (1)

Here, aij ∈ {−1, 0, 1} is a strength of connection from gene
i to gene j. Function σ(x) is defined to be −1 if x < 0 and
+1 otherwise.

Such a network has a point attractor (hereafter referred
to as just “attractor”) at state s′ if for some set S of two
or more initial conditions the state of the network converges
over time to s′ and then stops changing altogether.

The task for the evolutionary algorithms described in this
work is to find a matrix of connection strength values A
which describes a network with a desired attractor.
Fitness: Fitness of a network of N genes is defined against
a target attractor s′. For every target attractor s′ we tested
whether the network dynamics converges to it if it starts at
a close initial state. We began by generating a set S′ of N
perturbed attractor states, each of which differs from s′ at
exactly one gene. Then we carried out the network dynamics

(1) starting from every state s in S′ for 20 iterations or until
convergence to some state t (potentially different from s′).

The fitness of the network was then computed as

f(s′) = 1− e−3g, (2)

where

g =
1

N

∑
s∈S′

(1−D(s)/N)5, (3)

where D(s) is the Hamming distance between s and t if the
convergence did happen and N otherwise.

Note that this fitness function differs from the one used
in [6] only in the way in which the set S′j is generated. The
difference was introduced to reduce the time of computation.
Optimization objectives: We compare the performance
of a multiobjective evolutionary algorithm under different
sets of objectives. For the sake of uniformity we reduce all
objectives to a minimization of some function or property of
a network. Three objectives are used throughout the paper:

1. Performance (P) objective, implemented as minimiza-
tion of −f , where f is the fitness function.

2. Connection cost (CC) objective, implemented as min-
imization of the total number of connections.

3. Time-since-mutation (TSM) objective, which minimizes
the number of generations since the last mutation of
the network. The term is chosen to contrast with
an established “age” objective [10], which minimizes
the number of generations since the emergence of net-
work’s family tree. The objective was chosen as to
test whether diversity-promoting objective can facili-
tate the evolution of modular networks and because it
does not require a metric in the space of possible be-
haviors (a requirement for using the novelty objective
[9]) nor periodic injections of random genomes into the
population ([10]).

All objective sets considered in this paper include exactly
two objectives.
Evolutionary algorithm: We employ a simple biobjec-
tive evolutionary algorithm which relies on the concept of
stochastic Pareto dominance. For a pair of networks (A,B)
and a pair of minimizable functions (f, g), we determine
whether A stochastically dominates B by first generating
a uniformly distributed random number r ∈ [0, 1) and com-
paring it to a user-defined constant p ∈ [0, 1]. If r > p, only
the first objective f is taken into account and the dominance
is established if f(A) < f(B). If r 6 p, both objectives are
taken into account and A dominates B if either of the fol-
lowing conditions holds:

1. f(A) < f(B) and g(A) 6 g(B),

2. g(A) < g(B) and f(A) 6 f(B),

3. f(A) = f(B) and g(A) = g(B) and ID(A) < ID(B).

Here, ID(X) refers to the identification number of the net-
work, a value of a global integer which is incremented every
time any network in the population is created or mutated,
starting from 0. The value is recorded at the moment of the
X network’s mutation or creation. Thus, ID(A) < ID(B)
indicates that the network A was either generated or mu-
tated before network B.

1174

The constant p describes a probability that the second
objective is taken into account. If p = 1, stochastic Pareto
dominance becomes deterministic, making the comparison
between the networks simpler. However, it has been shown
in [5] that evolution with the objectives of performance and
connection cost (P&CC) has the best convergence rate when
p is distant from both 0 and 1. Despite the differences in the
stochastic Pareto dominance definition and in the selection
strategy, we were able to confirm this result in our prelimi-
nary trials (data not shown). Hence, we chose not to switch
to deterministic Pareto dominance in our comparison of the
P&CC approach to other approaches.

The Pareto front is defined as a subset P ′ of a population
P consisting of all elements of P which are not stochastically
dominated by any network in P . At every generation incre-
ment, the algorithm finds the Pareto front P ′ in the current
population and adds it to the new population. When done,
the algorithm selects a network from the Pareto front at
random, makes a copy, mutates it and appends the result-
ing offspring to the new population. This cycle is repeated
until the sizes of the populations become equal, at which
point the new population replaces the old one.

In all of our experiments the population was composed of
100 networks.
Mutation operator: Mutation operator acts on network’s
nodes, having a fixed probability of 0.05 to change the set of
strengths of incoming connections to any given gene. One
of the following operations may be performed on the gene:

1. Insertion adds an incoming connection with a strength
randomly selected from {−1, 1}. The gene at the tail
of the new connection is selected at random among the
genes which do not yet have a connection from them
to the current gene.

2. Deletion deletes a randomly selected incoming connec-
tion of the current gene by setting its weight to 0.

3. Density-preserving mutation, which is a deletion event
followed by an insertion event.

The probability of density-preserving mutation pdpm =
0.5 in all our experiments. Probabilities of insertion pins
and deletion pdel are controlled using their ratio rinsdel ≡
pins/pdel. In all of our experiments this ratio was set to 1.

If any operation is impossible, e.g. if there is no incoming
connections to this node and deletion is invoked, the node’s
incoming connections remain unchanged. Thus, density-
preserving mutation only really preserves density when it
is applied to a node with one or more incoming connections.
Initial populations: We consider two types of initial pop-
ulations of the networks. We will say that an initial popu-
lation is composed of random networks if the networks are
generated by choosing connection strength from {−1, 0, 1}
at random for every possible connection in the network.

The alternative to this is to build the initial population
out of randomly generated sparse networks. To obtain such
a networks, we create a network without any connections
and mutate it once. In the resulting network every node
has at most one incoming connection and possibly multiple
outgoing connections.
Modularity metric: We quantify the modularity of evolved
networks using the Q metric (e.g. [5, 6]). For a given decom-
position of a network into modules it measures the difference
between the actual fraction of the edges within modules and

Figure 1: Comparison of parameters of the most
fit networks evolved with different approaches.
Columns A and B correspond to tasks A and B in
the text. The lines represent mean values over 100
runs; bands are 95% confidence intervals for Student
t-distribution.

the expected fraction of edges for a random network of the
same density. Q is defined to be the maximum value of such
a difference across all possible decompositions of a network
into modules. To find the optimal decomposition, we use
Fast Unfolding of Communities method [2].
Density: The density of the network is defined as the num-
ber of connections in the network divided by the total num-
ber of possible connections, N2.

3. RESULTS
We investigated the performance of our multiobjective

evolutionary algorithm (see Methods) under the following
three sets of objectives and conditions:

P&CC-random This setup is similar to [5]. Following [5],
the probability that the connection cost objective is
taken into account was set to p = 0.25. Evolution
starts with an initial population of random networks.

P&CC-sparse Same as P&CC-random, but the initial pop-
ulation is composed of randomly generated sparse net-
works.

P&TSM-sparse The two objectives of performance and
TSM are taken into account deterministically (p = 1).
Evolution starts with a population of sparse networks.

The performance of the approaches was measured using the
task of finding a network with N nodes and N2 possible con-
nections that settles into the attractor in which neighboring
gene values are maximally different:

s′ = (1− 2(i mod 2) for i = 1, 2, ..., N).

Two variants of this task were considered: variant A with
N = 10 and variant B with N = 30.

The comparison is presented in Fig. 1. In both tasks, the
P&CC-random approach led to slower adaptation than both

1175

the P&CC-sparse and P&TSM-sparse approaches. For task
A, the average fitness for P&CC-random across 100 runs was
significantly lower than the fitness for both P&CC-sparse
(p = 6 · 10−5 with the Mann-Whitney U test implemen-
tation from scipy.stats) and P&TSM-sparse (p < 2 · 10−6)
at generation 25. Later in the evolutionary history P&CC-
random reaches the same values of fitness as P&TSM-sparse
does, marginally surpassing the P&CC-sparse approach (p <
3 · 10−3 at generation 125).

For the more complex task B, the speedup caused by seed-
ing the initial population with sparse networks is greater.
Here, P&CC-random’s fitness was worse than the fitness
of the two other approaches throughout the whole run of
2250 generations (p < 6 · 10−14). The two approaches which
start with populations of sparse networks – P&CC-sparse
and P&TSM-sparse – show similar adaptation curves for
both tasks, with P&TSM-sparse performing slightly better
(p < 4 · 105 for generations 50-800; the highest ratio of the
mean fitnesses is 1.054).

The patterns of variation of the Q value are different
for all approaches. For both tasks the connection cost-
based techniques both evolve networks with high Q which
is maintained among the champions of subsequent genera-
tions. However, it takes less generations for P&CC-sparse
than it does for P&CC-random. The number of the required
generations has increased approximately ninefold for task B,
which is in agreement with out O(N2) hypothesis. The fi-
nal Q value achieved by the P&CC-sparse approach is higher
than that of P&CC-random for both tasks (p < 4 · 106).

For both tasks the Q metric of P&TSM-sparse follows the
same rising pattern as it does for P&CC-sparse during the
first few generations. Both approaches develop highly mod-
ular solutions at this point, but for subsequent generations
modularity of P&TSM-sparse solutions falls rapidly while
the modularity of P&CC-sparse solutions remains the same.
This ultimately causes P&TSM-sparse to produce the least
modular solutions for both tasks (p < 9 · 10−5).

The changes in density follow the changes in Q values. For
task A, P&CC-random and P&CC-sparse stabilize at simi-
larly low density, although it takes longer for P&CC-random
to reach this state. For task B, the P&CC-random method
evolves networks whose density stabilizes at a much higher
value, perhaps due to the algorithm becoming trapped at
local optima. For the P&TSM-sparse approach, the density
keeps growing, but growth slows over generations.

4. DISCUSSION
Our findings confirm that seeding evolution with a popu-

lation of randomly generated sparse networks can facilitate
the evolution of modularity and increase the rate of adap-
tation. In our experiments this approach worked better for
when we evolved bigger networks.

We demonstrated that this effect is present for a biob-
jective performance plus connection cost (P&CC) algorithm
similar, but not identical, to the one described in [5]. How-
ever, when we seeded a multiobjective algorithm which mini-
mized time since the last mutation instead of connection cost
(P&TSM), we found that this initial increase in modularity
decays over generations. Despite this, the new algorithm
adapts approximately as fast as (and sometimes faster than)
the P&CC-sparse algorithm for our task.

These results suggest that it is possible to replace the
connection cost objective with another objective and still

obtain, at equivalent evolutionary rate, networks of equiv-
alent performance, possibly at the expense of some penalty
to modularity. We speculate that replacement of connection
cost with another diversity-promoting objective such as age
[10] or novelty [9] may be beneficial for some harder tasks.

5. ACKNOWLEDGMENTS
We thank John Long, Ken Livingston, Nick Livingston,

Marc Smith and Jodi Schwarz for fruitful discussions, and
in particular, for asking the right questions. We thank Jim
Bagrow for consultations in network theory. We thank the
anonymous reviewers of GECCO’15 track ”Multiobjective
optimization” for useful criticism. This work was supported
by the NSF award INSPIRE 1344227. The computational
resources provided by the Vermont Advanced Computing
Core which is supported by NASA (NNX-08AO96G) are
gratefully acknowledged.

6. REFERENCES
[1] W. R. Ashby. Design for a brain. Wiley, 1952.

[2] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and
E. Lefebvre. Fast unfolding of communities in large
networks. Journal of Statistical Mechanics: Theory
and Experiment, 2008(10):P10008, 2008.

[3] J. C. Bongard. Spontaneous evolution of structural
modularity in robot neural network controllers. In
Proceedings of the 13th annual conference on Genetic
and evolutionary computation, pages 251–258. ACM,
2011.

[4] B. Calcott. Chaining distinct tasks drives the
evolution of modularity. In ALIFE 14: The Fourteenth
Conference on the Synthesis and Simulation of Living
Systems, pages 701–702, 2014.

[5] J. Clune, J.-B. Mouret, and H. Lipson. The
evolutionary origins of modularity. Proceedings of the
Royal Society b: Biological sciences,
280(1755):20122863, 2013.

[6] C. Espinosa-Soto and A. Wagner. Specialization can
drive the evolution of modularity. PLoS computational
biology, 6(3):e1000719, 2010.

[7] M. Girvan and M. E. Newman. Community structure
in social and biological networks. Proceedings of the
National Academy of Sciences, 99(12):7821–7826,
2002.

[8] N. Kashtan and U. Alon. Spontaneous evolution of
modularity and network motifs. Proceedings of the
National Academy of Sciences of the United States of
America, 102(39):13773–13778, 2005.

[9] J.-B. Mouret. Novelty-based multiobjectivization. In
New horizons in evolutionary robotics, pages 139–154.
Springer, 2011.

[10] M. Schmidt and H. Lipson. Age-fitness pareto
optimization. In Genetic Programming Theory and
Practice VIII, pages 129–146. Springer, 2011.

[11] K. O. Stanley and R. Miikkulainen. Evolving neural
networks through augmenting topologies. Evolutionary
computation, 10(2):99–127, 2002.

[12] G. P. Wagner and L. Altenberg. Perspective: Complex
adaptations and the evolution of evolvability.
Evolution, pages 967–976, 1996.

1176

	Introduction
	Methods
	Results
	Discussion
	Acknowledgments
	References

