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ABSTRACT
In this paper we make a detailed computational compari-
son between different variants of memetic DE approaches,
including the two variants Greedy MDE (G-MDE) and Dis-
tance MDE (D-MDE), recently introduced in [2]. The com-
putational comparison reveals that G-MDE is quite effective
over single funnel functions, while D-MDE usually outper-
forms the other approaches over multifunnel landscapes.

Categories and Subject Descriptors
Mathematics of Computing [Mathematical optimization]:
Continuous optimization—nonconvex optimization

Keywords
Global Optimization; Differential Evolution; Memetic Ap-
proaches.

1. INTRODUCTION
Since its first appearance (see, e.g., [10]) Differential Evo-

lution (DE) revealed itself as a powerful evolutionary ap-
proach. Many researchers have proposed and computation-
ally investigated variants of the basic DE approach, per-
formed theoretical studies about it, and successfully applied
it in different applicative contexts. Due to the huge amount
of references about DE, here we only mention two compre-
hensive works about the topic, the book [8], and the survey
[3], and refer to them for further references. Our aim in this
paper is to extend the computational investigations in [2,
6], where very simple, but at the same time very effective,
variants of DE, powered with local searches, have been con-
sidered. We refer to the general scheme in Algorithm 1 for
a population based approach powered with local searches.

The general scheme for the Generation procedure within
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Algorithm 1: Generic model for a global optimization
algorithm based on local searches.

Data: objective function f : Rn → R to be minimized;
feasible domain X; local search L(f,X,x) with
starting point x ∈ X; parameter vector v.

P← GenerateStartingPoints(f,X,L,v);
while TerminationCriteria(P, f,X,v) = false do

for i ∈ {1, . . . , k} do
qi ← Generation(f,X,L,P,v, i);
P← Selection(P,qi,v);
v← UpdateParameters(f,X,P,v);

end
end

a DE approach is described in Algorithm 2. With respect
to the classical DE approaches, the only difference we intro-
duce is that a local search is started from the newly gener-
ated point. This gives rise to a memetic approach (see, e.g.,
[7]) called in what follows MDE. The classical Selection pro-

Algorithm 2: The generation procedure for MDE.

Data: P, the population matrix; k = |P|, population
size; i, the index of the evaluated point;
F1, F2 ∈ (0, 2); CR ∈ (0, 1) (crossover
probability).

Result: qi, the candidate vector.
Let d1, d2, d3, d4, d5 ∈ {1, . . . , k}\{i} all different;
foreach j ∈ {1, . . . , n} do

if U(0, 1) ≤ CR then

y
(j)
i ← p

(j)
d1

+ F1(p
(j)
d2
− p
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d3

) + F2(p
(j)
d4
− p
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) else

y
(j)
i ← p

(j)
i

end
qi ← L(f,X,yi);

cedure for DE approaches simply compares the current i-th
member of the population pi with the new candidate point
qi, and replaces the former with the latter if f(qi) < f(pi).
We have also investigated a variant, described in Algorithm
3, of the classical selection procedure, inspired by the PBH
approach (see [5]). In this variant, the new candidate point
qi competes with the member of the current population clos-
est to it (with respect to some distance measure), and re-
places it if it has a lower function value. In particular, the
distance measure d(·, ·) we have employed is based on func-
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tion values, i.e.,

d(s,u) = |f(s)− f(u)|.

This way the population does not only contribute to the
generation of new candidate points, but also, through the
comparison between ”similar” points, some diversification is
maintained within it. For what concerns the stopping

Algorithm 3: The selection procedure based on dis-
tances.
Data: P is the population matrix; i, the index of the

evaluated point; qi is the candidate point.
Result: The new population matrix P.
pnear ← p∗ ∈ P : d(qi,p

∗) ≤ d(qi,p), ∀p ∈ P;
if f(qi) < f(pnear) then

pnear ← qi;
end

rules, i.e., the TerminationCriteria procedure, we adopted
very simple ones, like stopping when the population does
not change for a prefixed number of iterations (stagnation
of the population), or when the population collapses into a
single point, or a prefixed number of local searches has been
performed. In the experiments we also stopped the search
as soon as the global minimizer was reached, although such
rule is only employed to evaluate the ability of an approach
to reach the global minimizer, but is not feasible in practi-
cal problems where the global minimum value is not known.
The most basic DE approach powered with local searches,
denoted by MDE/rand/1 after following the standard DE no-
tation, has been investigated in [6], and, in spite of its sim-
plicity, turned out to be a very competitive approach. Some
explanations for its success are given in that paper. In [2]
two variants, Greedy MDE (G-MDE) and Distance MDE (D-
MDE) have been introduced and compared with MDE/rand/1.
The aim of this paper is to extend the comparison to the
memetic variants of all main DE approaches. The details
of the tested approaches are the following. Note that in all
cases we set CR = 1, i.e., no crossover is performed. In-
deed, some experiments (see [6]) revealed that crossover is
useful for separable functions, but degrades the performance
over non separable functions. In what follows we denote by
best ∈ arg minj=1,...,k f(pj), (one of) the best member(s) of
the current population.

MDE/rand/1 d1, d2, d3 distinct and randomly generated
in {1, . . . , k} \ {i}; F1 = 0.5 and F2 = 0 (d4, d5 not
needed);

MDE/rand/2 d1, d2, d3, d4, d5 distinct and randomly gen-
erated in {1, . . . , k} \ {i}; F1 = 0.5 and F2 = 0.5;

MDE/target-to-best/1 d1, d3 = i, d2 = best, d4, d5 dis-
tinct and randomly generated in {1, . . . , k} \ {i}; F1 =
0.5 and F2 = 0.5;

MDE/best/1 d2, d3 distinct and randomly generated in
{1, . . . , k} \ {i}, d1 = best; F1 = 0.5 and F2 = 0;

MDE/best/2 d2, d3, d4, d5 distinct and randomly gener-
ated in {1, . . . , k} \ {i}, d1 = best; F1 = 0.5 and
F2 = 0.5;

G-MDE d1 = d3 = i, d2 randomly generated in {1, . . . , k}\
{i}; F1 = 0.5 ∗ sign(f(pi) − f(pd2)) and F2 = 0: the

sign of F1 is chosen in order to perturb the current
point in a direction which is a descent one according
to the observed function values;

D-MDE like G-MDE but with the selection procedure de-
scribed in Algorithm 3: the different selection aims at
preserving diversity within the population, preventing
too fast convergence.

Note that in all cases we set F1 = 0.5 (in fact, |F1| = 0.5
for G-MDE and D-MDE). We have not yet performed a
thorough computational investigation with other values for
F1 (as well as for F2), but preliminary experiments have
shown that this is a quite reasonable choice.

2. TEST FUNCTIONS AND EXPERIMEN-
TAL SETTINGS

We performed experiments with three classical highly mul-
timodal test functions and some of their variants. The func-
tions are (see [1, 9, 11]):

• Rastrigin function:

f1(x) = 10n+

n∑
i=1

(x2i−10 cos(2πxi)), x ∈ [−5.12, 5.12]n,

whose global minimizer is x∗ = 0 and the global min-
imum value is 0.

• Ackley function:

f2(x) = 20 + e− 20 exp
(
−0.2

√
1
n

∑n
i=1 x

2
i

)
−

− exp
(
1
n

∑n
i=1 cos(2πxi)

)
, x ∈ [−32.768, 32.768]n,

whose global minimizer is x∗ = 0 and the global min-
imum value is 0.

• Schwefel function:

f3(x) =

n∑
i=1

−xi sin
(√
|xi|
)
, x ∈ [−500, 500]n,

whose global minimizer is x∗ = (420.9687, . . . , 420.9687)
and the global minimum value is −418.9829n.

The Rastrigin function has an exponential number (10n)
of local minimizers, but the function is a single-funnel one
(i.e., descending sequences of close local minimizers all con-
verge to the global minimizer), and the local minimizers are
uniformly distributed within the feasible set. The Ackley
function is also a single funnel one, but the nearest distance
between local minimizers tends to decrease as we approach
the global minimizer. The Schwefel function is more chal-
lenging with respect to the previous test functions, in view
of its multifunnel nature, i.e., close local minimizers form
descending sequences converging to different local minimiz-
ers, also known as funnel bottoms (an exponential number
of funnel bottoms exists). Simplifying features of these func-
tions (like, e.g., separability, symmetry with respect to the
origin, invariability with respect to permutation of the vari-
ables) are removed by introducing some variants of the basic
test problems. These variants, well known in the literature,
and described in what follows, maintain the main proper-
ties of the functions (multimodality, single or multifunnel
landscape) but remove the simplifying features:

fi(DW(x− x̄)), i = 1, . . . , 3,
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where: D is a diagonal matrix of order n with positive di-
agonal elements; W is an orthonormal matrix of order n; x̄
is a n-dimensional shift vector. The following combinations
of the transformations have been considered:

• D = W = I, x̄ = 0 (separable version): this is the
original version of the function;

• D = I, W random orthonormal matrix, x̄ = 0 (rotated
version);

• D = I, W random orthonormal matrix, x̄ randomly
generated within the feasible region (rotated+shifted
version);

• D with random diagonal elements in the interval [1, 4],
W random orthonormal matrix, x̄ randomly generated
within the feasible region (rotated+shifted+scaled ver-
sion).

For the Rastrigin function we also considered the application
of the following nonlinear transformation (see [4]) to each
component of the argument vector z = DW(x− x̄)

g(zi) =


zi if zi ≤ 0

z
(1+0.2 i−1

n−1

√
zi)

i otherwise.

Note that more test functions (the Levy, the Sinusoidal and
the Schaffers F7 ones) have been discarded since they turned
out to be quite simple ones with respect to the proposed ap-
proaches. The overall set of test problems we employed is
made up by the following twelve test problems: four version
of the Rastrigin function; three version of the Rastrigin func-
tion with the additional nonlinear transformation g; three
version of the Ackley function; two verison of the Schwefel
function. Dimensions n = 10, 50 have been considered. The
population size has been fixed to: k = 10 for the Ackley and
Rastrigin functions with n = 10; k = 40 for the Schwefel
functions with n = 10; k = 20 for the Ackley functions with
n = 50; k = 40 for the Rastrigin functions with n = 50;
k = 200 for the Schwefel functions with n = 50. We remark
that the size of the population is the only parameter var-
ied throughout the tests. A constant parameter value is not
valid for all the test functions: a proper value depends on
the function properties and searching for adaptive rules to
select and update this value on the basis of the local mini-
mizers observed during the run of an algorithm is indeed a
relevant topic for future research. Local searches have been
performed through the local solver MINOS. We point out that
in [2] also other local solvers have been tested, such as SNOPT.
In fact, the local solver may have a considerable impact on
the overall performance of the proposed approaches. A re-
markable example is given by the result for the separable
Rastrigin function with the additional nonlinear transfor-
mation (see the following Table 2): while the result with
MINOS are poor with a low percentage of successes, those
with SNOPT are much better (e.g., the 3 successes with an av-
erage of 7582 local searches for G-MDE with MINOS, become 50
successes with an average of 412 local searches for the same
approach with SNOPT). A similar observation also holds for
the Schwefel function. However, the relative performance of
the different approaches are usually stable throughout the
different local solvers, and we decided to present only the re-
sults with MINOS, in order not to overwhelm the reader with
too many data.

3. COMPUTATIONAL RESULTS
Due to space limitations we only display in Tables 1-4 the

results for the tests with n = 50. The results for n = 10 can
be found at www.ce.unipr.it/~locatell/results.pdf. In
each table we have the following columns: Sm, the number
of successes over m runs (i.e., the number of times over m
runs the algorithm stopped after reaching the global mini-
mum value); LS the average number of local searches; D,
the average distance between the final value attained by the
approach and the global minimum value at runs where the
global minimum value is not attained. Further information,
such as standard deviation, minimum and maximum both
for the number of local searches and for the average distance,
are not reported here due to space limitations but can also
be found at www.ce.unipr.it/~locatell/results.pdf, to-
gether with some graphical representation of the results.
The rows of the tables correspond to the tested approaches.
In particular:

• ttb/1 denotes MDE/target-to-best/1;

• b/1 denotes MDE/best/1;

• b/2 denotes MDE/best/2;

• r/1 denotes MDE/rand/1;

• r/2 denotes MDE/rand/2;

• G denotes G-MDE;

• D denotes D-MDE.

For each function we highlighted the row corresponding to
the approach with the lowest number of local searches per
success (i.e., the lowest ratio LS/Sm). Our main observa-
tions, based on the overall data (including those for n = 10),
are the following:

• as expected, the fast converging MDE/best/1 approach
is the one with the lowest number of local searches,
but its performance, in terms of number of successes,
on the most challenging versions of the test functions
is poor;

• MDE/best/2 is more robust than MDE/best/1 but also
requires a higher number of local searches. Moreover,
MDE/target-to-best/1 usually performs better than
MDE/best/2 over the Rastrigin and Ackley functions,
both in terms of local searches and in terms of number
of successes. Overall, MDE/target-to-best/1 turns
out to be a quite good approach over the single fun-
nel Rastrigin and Ackley functions. It performs worse
than MDE/best/2 over the Schwefel functions, but over
these functions both approaches perform poorly.

• MDE/rand/1 is less efficient than MDE/target-to-best/1

and also than MDE/best/2 over the Rastrigin and Ack-
ley functions, but the removal of the step towards the
current best member of the population allows for a
slower convergence and, thus, a better performance
over the multifunnel Schwefel functions.

• MDE/rand/2 allows for a wider exploration of the fea-
sible region, i.e., there is more diversification within
the search. This feature makes it less efficient over
single funnel functions, but is sometimes, though not
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Rastrigin50 - MINOS

Alg. Separable Rot.

- S50 LS D S50 LS D

ttb/1 50 224 0 33 5261 1.05
b/1 50 177 0 20 897 0.99
b/2 50 454 0 37 3555 0.99
r/1 50 586 0 15 2914 1.14
r/2 50 2121 0 29 14151 2.56
G 50 190 0 27 4762 1.04
D 50 1677 0 48 5986 1.99

Alg. Rot. + Shift Rot. + Shift + Scaled

- S50 LS D S50 LS D

ttb/1 50 589 0 50 1213 0
b/1 44 372 10.75 18 699 9.25
b/2 50 1254 0 50 3104 0
r/1 49 1713 4.41 50 4619 0
r/2 50 4909 0 7 17416 13.33
G 50 418 0 50 934 0
D 47 5309 2.32 43 9740 18.66

Table 1: Tests made with a population of 40 elements.

RastriginNotSym50 - MINOS

Alg. Separable Rot. Rot + Shift

- S50 LS D S50 LS D S50 LS D

ttb/1 2 11775 6.6 48 3110 0.9 40 3130 0.9
b/1 0 2974 17.5 21 1263 2.5 7 1201 3.4
b/2 0 9207 64.4 46 11384 1.2 43 9075 15.4
r/1 0 10460 60.4 49 9728 6.9 43 9997 2.4
r/2 0 9281 94.1 0 11435 59.2 0 11635 37.5
G 3 7582 3.3 50 1306 0 24 3668 0.9
D 0 28438 2.1 49 9574 17.9 37 10911 19.0

Table 2: Tests made with a population of 40 elements.

always, useful for Schwefel functions. We conjecture
that this generation mechanism needs for a larger pop-
ulation size and/or a stopping rule which allows for a
higher number of iterations with respect to the other
approaches. However, we believe that other diversifi-
cation mechanisms, such as the one in D-MDE are more
effective.

• G-MDE is often comparable with MDE/target-to-best/1

over single funnel functions, but it performs better over
the Schwefel functions;

• D-MDE usually performs many local searches, in view
of its diversification mechanism. This makes D-MDE a
robust but less efficient option for single funnel func-
tions (i.e., the global minimizer is often reached but
with a large number of local searches); instead, this
behavior makes it the best performing approach over
the multifunnel Schwefel functions.

In conclusion, the computational investigations confirm that
the newly proposed G-MDE and D-MDE approaches are quite
competitive even when compared with different DE variants
powered with local searches. As already observed in [2],
G-MDE tends to perform better over single funnel functions,
although over these functions MDE/target-to-best/1 seems
to be a comparable choice. Instead, D-MDE appears to be the
best choice for multifunnel functions. A relevant topic for
future research, partially already faced in [2] with the pro-
posal of a hybrid approach, is that of studying an approach
which is able to self adapt to the properties of the function to
be optimized. In particular, according to our experiments,
it appears that a proper choice both of the population size
and of the selection mechanism is of primary importance.
Another relevant topic, only quickly mentioned in this pa-
per but which deserves some attention, is the impact of the
adopted local solver. Indeed, according to our experiments,
such choice can be quite relevant.

Ackley50 - MINOS

Alg. Separable Rot. Rot + Shift

- S50 LS D S50 LS D S50 LS D

ttb/1 50 206 0 50 116 0 50 136 0
b/1 49 166 0.88 50 93 0 50 94 0
b/2 50 450 0 50 176 0 50 182 0
r/1 50 734 0 50 214 0 50 243 0
r/2 38 2385 19.20 50 458 0 50 553 0
G 50 202 0 50 82 0 50 110 0
D 50 1382 0 50 299 0 50 426 0

Table 3: Tests made with a population of 20 elements.

Schwefel50 - MINOS

Alg. Separable Rot.

- S10 LS D S10 LS D

ttb/1 0 22880 2435.7 0 24680 2139.5
b/1 0 1400 2447.5 0 1660 2044.8
b/2 0 2980 1819.8 0 4140 1464.5
r/1 0 17480 564.7 0 25620 765.7
r/2 8 29160 351.9 0 34080 5494.5
G 0 27440 2795.9 1 50940 1062.1
D 9 76380 1180.2 8 64080 589.6

Table 4: Tests made with a population of 200 elements.
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