
Towards a Knowledge Base for Performance Data:
A Formal Model for Performance Comparison

Hans Degroote
KU Leuven

Department of Computer Science
CODeS & iMinds-ITEC

Hans.Degroote@kuleuven-kulak.be

Patrick De Causmaecker
KU Leuven

Department of Computer Science
CODeS & iMinds-ITEC

Patrick.DeCausmaecker@kuleuven-
kulak.be

ABSTRACT
This paper has been motivated by two observations. First,
empirical comparison of algorithms is often carried out in
an ad hoc manner. Second, performance data is abundantly
generated, yet often not efficiently used. This second obser-
vation is particularly valid in the presence of evolutionary
computing and other metaheuristic techniques. Inspired by
these observations, a formal model for performance is intro-
duced wherein the space of possible performances is mod-
elled as a total order. On top of the total order, a quan-
tification of the difference between performances is defined.
The model is illustrated by formally defining the ”penalised
runtime” criterion for data from the 2014 SAT competition.
Finally, the idea of defining questions in terms of a for-
mal performance model is introduced, thereby taking the
first step towards a knowledge base for performance data.
Regardless of problem domain, the same questions can be
answered by the knowledge base, provided performance is
measured in a manner compliant with the formal model.

Categories and Subject Descriptors
D.4.8 [Software Engineering]: Metrics—performance mea-

sures

Keywords
Algorithm comparison, Performance measurement, Meta-
heuristics

1. INTRODUCTION
Experimental comparison of algorithms is often carried

out in an ad hoc manner. Performance data is abundantly
generated nowadays, but its potential remains largely un-
tapped. These two observations serve as motivation for
the research presented in this paper: a first step towards a
knowledge base for performances. When a set of instances, a
set of algorithms and the performance of each algorithm on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for prof t or commercial advantage and that copies bear this notice and the full citation
on the f rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specif c permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’15, July 11 - 15, 2015, Madrid, Spain
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-3488-4/15/07. . . $15.00
DOI: http://dx.doi.org/10.1145/2739482.2768476

each instance is input, a number of well-defined questions
can be answered. Two examples of common straightfor-
ward questions are ”which algorithm is best suited to solve
a particular instance?” and ”How much does a particular
new algorithm improve on the state of the art algorithm?”.
However, more complex questions are definable as well.

To transform questions such as the ones raised into an op-
erational definition, a mathematical model for performance
measurement is introduced. Performance measurement is
modelled in two stages. At first the user defines a perfor-
mance function subject to only one condition: performances
must be totally ordered. In a second stage the user quan-
tifies the difference between any two performances with a
quantification function.

Section 2 introduces a formal model for performance com-
parison. Section 1.1 defends the claim that this model can
be used to improve the reliability of algorithm comparison.
Section 3.1 discusses the importance of explicitly defining
how performance is measured. Section 3.2 provides an ex-
ample of such an explicit definition, based on data from the
2014 SAT competition. Section 4 introduces the method-
ology to extract knowledge from performance data. The
relevance of a knowledge base for performance data is ar-
gued in section 1.2 by pointing out three situations in which
a large amount of performance data is naturally produced,
yet often not efficiently used.

1.1 Relevance for algorithm comparison
Stating that a particular algorithm is better than another

algorithm is a non-trivial statement. Ideally it is supported
by statistical evidence. But even when this statement is
supported by statistical evidence, it might not be clear what
exactly was being measured in the first place. What does a
performance of 1000 mean? Is it better than a performance
of 500? Is it twice as good?

This paper provides a methodology to support the state-
ment that a particular algorithm is better than another al-
gorithm, but it requires a more nuanced formulation: ”An
algorithm is better than another algorithm on a particular
instance set, according to a particular performance function
and a particular quantification function”. It is the respon-
sibility of the researcher who carried out the experiment
to convince the audience of the rationality of his choice of
performance function and quantification function. The re-
searcher also has to convince the audience that the instance
set is representative and that the results can be extrapolated
to other instances. Smith-Miles et al. [2] have proposed a

1189

methodology for generating a diverse set of instances that
can be used in this context.

1.2 Situations where performance data is gen-
erated

Three situations where performance data is generated will
be discussed: hands-on experimentation, automatic algo-
rithm configuration and algorithm competitions.
Consider an algorithm developer who has implemented

multiple solutions strategies. To determine which solution
strategy is best, the developer will test each strategy on a
set of instances. Multiple solution strategies occur natu-
rally in many modern algorithmic approaches, particularly
in metaheuristics. A different genome representation in an
evolutionary algorithm defines a new solution strategy. A
different neighbourhood structure in a local search algorithm
defines a new solution strategy. Modifying any numerical pa-
rameter, such as the amount of particles in particle swarm
optimisation, or changing the annealing schedule of a simu-
lated annealing algorithm, all define new solution strategies.
The testing process generates a wealth of data. Unfortu-

nately, a lot of knowledge remains hidden because no gen-
eral knowledge extraction method exists. The developer
might not want to spend time investigating, for example,
the performance gain achievable by running multiple solu-
tion strategies in parallel. Yet the input required to calculate
this performance gain is present in the test data.
The knowledge base presented in this paper can be used

as a data management and knowledge extraction tool for
algorithm evaluation. If the algorithm developer transforms
his raw experimental data to a performance function and
a quantification function, he or she can immediately query
the system for information. It is no longer necessary to
manually analyse, in the worst case, a spreadsheet with raw
performance data.
When the space of solution strategies consists of different

parametrisations of a single algorithm, automatic algorithm
configuration can automate the testing process. Automatic
algorithm configuration techniques search the space of pos-
sible parameter values for an optimal configuration. A more
formal definition as well as an overview of the state of the
art can be found in [1]
Algorithm competitions result in vast amounts of perfor-

mance data generated in identical experimental conditions.
Still, the wealth of information that this data can provide
remains largely unexplored. In [3], Xu et al. perform some
analyses on data generated during the 2011 SAT competi-
tion. They formulate interesting questions related to mea-
suring the value of a solver in algorithm portfolios and au-
tomatic algorithm selection techniques, but do not provide
formal definitions. These questions could be added to the
knowledge base, as discussed in section 6.

2. MODEL

2.1 Comparing performances
Let I be a finite set of instances of some problem domain.

Let A be a finite set of algorithms. Let pf be a performance
function, describing the performance of each algorithm on
each instance. The domain of pf is the Cartesian product
of the sets of all instances and all algorithms. The image
of pf is some set P consisting of all possible performances.
Using these notational conventions, a performance function

can be defined as in definition 1. pf(a, i) = p should be read
as ”the performance of algorithm a on instance i is p.

Definition 1. pf : A× I → P : pf(a, i) = p

The question which of two performances is better lies at
the heart of a lot of research in empirical computer science.
Ensuring that each two performances are comparable is done
by imposing a total order on the image of the performance
function. This entails that performances can be compared
using some binary relation ’≤’. Stating that ’p1 ≤ p2’ is
stating that performance p1 is worse than or equally good as
performance p2. A total order must uphold three properties
for all elements a, b and c of the set on which it is imposed:

• a ≤ b ∨ b ≤ a (totality)

• (a ≤ b ∧ b ≤ a) ⇒ a = b (antisymmetry)

• (a ≤ b ∧ b ≤ c) ⇒ a ≤ c (transitivity)

Totality ensures that all performances are comparable to
each other. Antisymmetry ensures that for every two dis-
tinct performances, it is possible to say which is better.
Transitivity ensures consistency.

2.2 Measuring performance difference
Modelling performances as belonging to a totally ordered

space permits comparison, but it remains impossible to quan-
tify performance differences. Quantification becomes possi-
ble by mapping each performance to a unique real number.
This mapping is defined by a quantification function qf ,
with as domain a performance space and as image the real
numbers. Any quantification function must adhere to the
following two properties:

• qf(p1) =n qf(p2) ⇔ p1 = p2

• qf(p1) ≤n qf(p2) ⇔ p1 ≤ p2

Quantifications are ordered according to the natural order-
ing of the real numbers. ≤n and =n refer to this natural
ordering of the real numbers. The first property states that
each performance must be mapped to a unique real num-
ber. The second property ensures consistency between the
ordering of performances and the ordering of their quantifi-
cations.

The difference between two performances p1 and p2, ac-
cording to a particular quantification function qf , is equal to
|qf(p1)− qf(p2)|. Note that it is the user’s responsibility to
ensure that this difference has a quantitative interpretation.
Section 3.1 expands on this remark.

3. DEFININGPERFORMANCEANDQUAN-
TIFICATION FUNCTIONS

3.1 Def ning a correct function
It is important to keep in mind that answers to queries

to the knowledge base, of which some examples are given in
section 4, provide information for one specific performance
function and, when relevant, for one specific quantification
function. Defining a new performance function corresponds
to defining a new way of ranking performances.

Consider a decision problem with time limit. Some algo-
rithms might excel at solving instances within the time limit.

1190

Other algorithms might obtain solutions more quickly on
average, but might not solve as many instances as the first
kind of algorithms. To focus on algorithms of the first kind,
a binary performance function can be defined: either an in-
stance is solved, or it is not. All algorithms that solve an
instance within the time limit solve the instance equally well,
regardless of the actual time taken. To focus on algorithms
of the second kind, a continuous performance function can
be defined. An algorithm that solves a particular instance
performs better than another algorithm that also solves the
instance, if the second algorithm needs more time than the
first. Both approaches to measuring performance are valid.
Preferability is situational.
Using a different quantification function can also alter re-

sults. Consider again a decision problem with time limit.
Assume the performance function is continuous and that
less time taken results in better performance. A straightfor-
ward quantification can be defined by considering the value
of the runtime. However, improving runtime from 5 seconds
to 2 seconds might be more relevant than improving runtime
from 1000 to 997 seconds. A linear quantification function
cannot represent this. Some logarithmic function might be
better. The ranking of performances remains constant, re-
gardless of which of the two quantification functions is used,
because ranking is determined by the performance function.
But, the difference between two performances might have
changed, which will influence the answers to more complex
questions that require information from the quantification
function.

3.2 An example: SAT
To illustrate the model presented in section 2, it will be

applied to a specific problem domain. The example uses
data of the ”Sequential, Application SAT+UNSAT” track
of the 2014 SAT competition. This data is available from
the website of the SAT competition. 1 The SAT competi-
tion is a recurring competition for algorithms that solve the
boolean satisfiability problem. The algorithms’ goal is to
either prove that a boolean formula is satisfiable or that it
is not satisfiable, within a certain time limit.
The algorithm set A contains more than 30 algorithms.

The instance set I consists of 300 instances. This dataset
represents millions of CPU-seconds, yet uploading this read-
ily available data into a knowledge base requires a trivial
amount of time.
The SAT competition website reports the results in two

files: an answer file and a runtime file. Data in the an-
swer file takes one of four forms. If the instance is proven
satisfiable within the time limit, ”SAT” is reported. If the
instance is proven not to be satisfiable within the time limit,
”UNSAT” is reported. If the algorithm executed normally,
but failed to obtain an answer, ”time limit exceeded” is re-
ported. In case of an error, ”unknown” is reported. Data in
the runtime file takes one of two forms. If the instance is
proven to be satisfiable or proven not to be satisfiable within
the time limit of 5000 CPU seconds, the total CPU-time in
seconds, with up to three decimal digits, is reported. If the
instance remains unsolved within the time limit, or if some
error occurred, the maximal runtime (5000.0) is reported.
Data from the two result files is combined to create a

performance function. The performance domain P is defined

1http://satcompetition.org/2014/results.shtml

as follows:

P = [0, 5000] ∪ {TIMEOUT}

The performance function pf is defined as:

pf : A× I → P :pf(a, i) =

rt(a, i) [ans(a, i) = SAT ∨ ans(a, i) = UNSAT]

TIMEOUT [otherwise]

Here, rt(a, i) returns the result of algorithm a on instance i

according to the runtime file, and ans(a, i) returns the re-
sult of algorithm a on instance i according to the answer
file. The actual runtime is used when a solution is found.
”TIMEOUT” is reported when the time limit is exceeded
and in case of an error. Note that the interval [0, 5000] im-
plies that the set of performances is infinite. In this example,
performances could also be modelled as the union of the sin-
gleton TIMEOUT and the finite set of all numbers between
0 and 5000 with up to three decimals, because the raw data
is limited to this finite set of numbers.

The total order on P that will be used is:

∀p1, p2 ∈ P :p1 ≤ p2 ⇔

(p1 = TIMEOUT)

∨(p1 ∈ [0, 5000] ∧ p2 ∈ [0, 5000] ∧ p1 ≥n p2)

The ≥n in the last line refers to the natural ordering on
the real numbers. It can be used because for both p1 and p2
is checked that they belong to an interval of real numbers.
TIMEOUT is worse than any solution found within the time
limit. For solutions found within the time limit, requiring
less time to find the solution results in better performance.

The quantification function is based on the PAR10 crite-
rion. PAR is short for ”penalised runtime”. PAR transfor-
mations are used to measure performance for decision prob-
lems when runtime is limited. They penalise time-outs to
better differentiate a time-out from a solution found only
just within the time limit. With PAR10, runs completed
within the time limit are mapped to themselves and time-
outs are mapped to ten times the time limit. The time limit
is 5000, resulting in the following quantification function:

qf : P → {0} ∪ [45000, 50000] : qf(p) =

0 [p = TIMEOUT]

50000− p [p ∈ [0, 5000]]

The model requires lower quantifications to be worse than
higher quantifications. Therefore a TIMEOUT has per-
formance 0. The theoretically best possible quantification
achievable with this quantification function is 50000, corre-
sponding to finding a solution instantly.

4. FORMULATING QUESTIONS

4.1 Using the performance function
The most basic question to be asked is ”What is the per-

formance of an algorithm on an instance?”. This question
is trivially answerable using this paper’s model if ”accord-
ing to a particular performance function” is appended. The
answer to this question is the result of applying the perfor-
mance function to the algorithm and instance.

Because the set of performances is totally ordered, the per-
formance of algorithms on instances is comparable. There-
fore questions such as ”Is a particular algorithm better than

1191

another algorithm for a particular instance, according to a
particular performance function?” and ”Is a particular in-
stance harder than another instance for a particular algo-
rithm, according to a particular performance function?” be-
come answerable.

Best performance on an instance
One of the most basic non-trivial questions is: ”What is
the best performance achievable on a particular instance,
according to a particular performance function?”. This best
performance is defined in definition 2.

Definition 2. bestPerformance(i) =
p ∈ P : ((∃a ∈ A : pf(a, i) = p) ∧ (∀a ∈ A : pf(a, i) ≤ p))

The best performance achievable on an instance satisfies two
requirements. First, at least one algorithm must be mapped
to it. Second, there exists no algorithm with strictly better
performance on the instance.
Note that the best algorithm to solve an instance is not

uniquely defined. Only the best performance achievable by
an algorithm is uniquely defined. Multiple algorithms might
achieve this best performance.

4.2 Using the quantif cation function
The ability to rank performances suffices to answer sim-

ple questions. However, a lot of interesting questions re-
quire quantification. The most basic question to be asked
that involves quantification is: ”How large is the difference
between two performances?”. The most common variant of
this questions is probably: ”What is the difference between
the performance of two particular algorithms on a particular
instance?”. But, ”How much harder is it to solve instance
i1 than it is to solve instance i2, using a particular algo-
rithm?” is also a possibility. These questions are all directly
answerable when a quantification function has been defined.

Algorithm comparison on a set of instances
To enable well-defined comparison of algorithms on an in-
stance set, the difference between two algorithms is defined.
Define the difference between algorithms a1 and a2 on a set
of instances J , for a particular performance function pf and
a particular quantification function qf , as in definition 3.

Definition 3.

diff(a1, a2, J) =
∑

i∈J

qf(pf(a1, i))−
∑

i∈J

qf(pf(a2, i))

If diff(ai, a2, J) is 0, both algorithms perform equally well
on instance set J according to the given performance and
quantification function. If the difference is positive, algo-
rithm a1 outperforms a2. If the difference is negative, algo-
rithm a2 outperforms algorithm a1. The size of the differ-
ence is the amount by which the better algorithm outper-
forms the other.

5. CONCLUSION
This paper has proposed a formal model for describing

the performance of an algorithm on an instance. The model
facilitates precise algorithm comparison by requiring an ex-
plicit description of how performance is measured. This ex-
plicit description consists of two functions: a performance
function to order performances and a quantification function

to quantify the difference between performances. It was ex-
emplified that the same problem domain can be represented
by different functions and that different functions can yield
different results for algorithm comparison. The model was
illustrated by formally describing the results of the 2014 SAT
competition using the ”penalised runtime” performance cri-
terion.

This paper has also proposed a first step towards a knowl-
edge base for performance data. If questions are formulated
in terms of a formal model, they are applicable to any prob-
lem domain for which a performance and quantification func-
tion have been defined. As an example, the basic question
of what the best achievable performance on an instance is,
was defined in terms of the model presented in this paper.
The question which of two algorithms is best on an instance
set, and by how much, was also formally defined. A general
knowledge extraction process could prove particularly use-
ful in the presence of algorithm competitions and extensive
testing: the tedious work of generating the data required to
obtain knowledge has already been completed.

6. FUTURE RESEARCH
Two immediate directions for future research exist. First,

performance and quantification functions for common prob-
lem domains can be defined. If a pair of performance and
quantification functions is generally accepted, algorithm com-
parison can become clearer. Algorithms can even be ranked
based on different performance and quantification functions.

A second immediate direction for future research is to de-
fine more elaborate questions, thereby extending the utility
of the knowledge base. A promising area for which a knowl-
edge base of performances might be useful is that of algo-
rithm portfolios and automatic algorithm selection. Meth-
ods for these fields generally require an overview of perfor-
mance data for a set of algorithms and instances, which is
exactly what this knowledge base stores. If relevant ques-
tions such as ”How large is the potential for algorithm selec-
tion?”and ”What is the optimal portfolio of algorithms?”are
formulated in terms of a formal model, they become quickly
answerable for every problem domain.

7. ACKNOWLEDGMENTS
Work supported by the Belgian Science Policy Office (BEL-

SPO) in the Interuniversity Attraction Pole COMEX.
(http://comex.ulb.ac.be)

8. REFERENCES
[1] Hoos, H. H. Automated algorithm configuration and

parameter tuning. In Autonomous search. Springer,
2012, pp. 37–71.

[2] Smith-Miles, K., Baatar, D., Wreford, B., and

Lewis, R. Towards objective measures of algorithm
performance across instance space. Computers &

Operations Research 45 (2014), 12–24.

[3] Xu, L., Hutter, F., Hoos, H., and Leyton-Brown,

K. Evaluating component solver contributions to
portfolio-based algorithm selectors. In Theory and

Applications of Satisfiability Testing–SAT 2012.
Springer, 2012, pp. 228–241.

1192

