
Evolutionary Design via Indirect Encoding of Non-Uniform
Rational Basis Splines

Adam Gaier
Bonn-Rhein-Sieg University of Applied Sciences

Grantham-Allee 20
Sankt Augustin, Germany
adam.gaier@h-brs.de

ABSTRACT
A novel approach to produce 2D designs by adapting the
HyperNEAT algorithm to evolve non-uniform rational basis
splines (NURBS) is presented. This representation is pro-
posed as an alternative to previous pixel-based approaches
primarily motivated by aesthetic interests, and not designed
for optimization tasks. This spline representation outper-
forms previous pixel-based approaches on target matching
tasks, performing well even in matching irregular target
shapes. In addition to improved evolvability in the face of
a well-defined fitness metric, a NURBS representation has
the added virtues of being continuous rather than discrete,
as well as being intuitive and easily modified by graphic and
industrial designers.

CCS Concepts
•Computing methodologies → Genetic algorithms;
Parametric curve and surface models; Neural networks;

Keywords
Design Optimization; HyperNEAT; NURBS; Indirect En-
codings; Compositional Pattern Producing Networks

1. INTRODUCTION
Increased availability of high performance computing re-
sources, coupled with the growing sophistication of surrogate
modeling techniques [4], is rapidly increasing the capabili-
ties of evolutionary design optimization from toy problems
to real world engineering applications. For the field to truly
progress strides must also be made in the development of
flexible design representations which can not only express
complex objects but can be effectively evolved.

Designers of evolutionary design optimization algorithms of-
ten find that it is necessary to reduce the number of design
parameters to make the problem tractable. This can be done
by crafting domain specific representations, for example in
aerodynamics optimization PARSEC parameters which de-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’15, July 11 - 15, 2015, Madrid, Spain
c© 20XX Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-3488-4/15/07. . . $15.00
DOI: http://dx.doi.org/10.1145/2739482.2768478

fine the geometry of an airfoil [9], or by narrowing the design
focus, such as reducing the aerodynamics of an automobile
body to the angle of the rear section while keeping the rest
of the body the same [3].

In many cases however such a reduction is either not fea-
sible or not desired. If, again using the aerodynamics case
as an example, we would like to optimize the entire body of
the car for low wind resistance we are confronted with an
overwhelming number of parameters which define the shape
in its entirety. Not only are there a large number of param-
eters, but these parameters also interact; the shape of the
front of a car has a large effect on the air flow at the back.
In order to simultaneously optimize a large number of inter-
acting parameters we look to tools used in neuroevolution,
a field which faces the same difficulty.

2. RELATED WORK
HyperNEAT evolves Compositional Pattern Producing Net-
works (CPPNs), which encode spatial patterns as a compo-
sition of simple functions [10, 12]. Each node in the network
is assigned a geometric position, and the positions of the
two nodes are used as input to the CPPN. The resulting
output of the CPPN is then assigned as the weight of the
connection between the two nodes. This indirect representa-
tion allows for neural networks, regardless of the number of
nodes and weights, to be effectively optimized. CPPNs take
the form of a directed graph with weighted edges, and so
themselves are similar enough in structure to be evolved us-
ing the NeuroEvolution of Augmenting Topologies (NEAT)
algorithm [11]. The NEAT algorithm begins with mini-
mal neural networks, which gradually become more complex
through mutation. HyperNEAT, the evolution of CPPNs
via NEAT to produce neural networks, has proven effective
across a variety of domains [2].

The HyperNEAT algorithm has also been applied to the
design of both pixels of 2D patterns [8] and voxels of 3D ob-
jects [1]. These experiments have primarily been motivated
by creating interesting patterns and shapes, and so the ma-
jority of work has been limited to evolution based on user
preference, emphasizing demonstrations of expressivity over
the ability to evolve in response to a well-defined fitness
measure. What optimization experiments have been done
with these representations have involved matching a form
to a preexisting shape, with the hope that an existing image
or object could be converted into a CPPN representation
and be evolved further based on user input. Experiments

1197

with both the 2D [13] and 3D case [1] have shown that the
HyperNEAT algorithm, coupled with a pixel or voxel rep-
resentation, struggles to match all but the most trivial ob-
jects. In an attempt to improve this matching capability, an
alternative representation, using ellipses rather than pixels
as the basic building block, has been proposed in order to
better convert an existing shape to a CPPN representation,
though at present it has only been tested in a user-driven
manner [6].

Here we present an approach using the HyperNEAT al-
gorithm to produce Non Uniform Rational Basis Splines
(NURBS) [5]. NURBS are a widely used design represen-
tation both in engineering and computer graphics. This is
particularly important in an evolutionary design setting, as
evolved designs must be able to be intuitively understood
and altered by others. We demonstrate how to adapt the Hy-
perNEAT algorithm to a NURBS representation, and com-
pare it to the pixel approach in basic tests of evolvability.

3. METHODS
We compare two representations used to produce two di-
mensional shapes, both based on a CPPN encoding evolved
through the HyperNEAT algorithm. First we define a sub-
strate. The substrate is composed of geometric coordinates
which are used input to the CPPN. In the case of the pixel-
based approach we have two layers, which correspond to the
x and y coordinates of the image. The values of the matching
cells in each layer are paired and used as input values (along
with a bias1) to the CPPN. The output value, determined
by the weighted connections and various activation functions
of the CPPN, is then assigned as an intensity value for the
pixel associated with the substrate cell.

In order to produce a well-defined shape we use a threshold
value (i.e. intensity > 0) to determine whether a pixel is
black or white. This same technique was used for the evo-
lution of 3D shapes to determine whether a given voxel was
filled or empty [1]. Once we have converted the output to
a binary image we take the border of the largest shape as
our expressed design. This process is illustrated on the left
half of Figure 1. While the CPPN is a continuous represen-
tation, it is expressed in a discrete space determined by the
resolution of the substrate.

To use the HyperNEAT approach to produce splines we re-
turn to the concept of a pattern of connectivity. A sin-
gle NURBS curve in isolation can be understood as a start
point, an end point, and an intermediate control point which
determines the form of the curve. We interpret this interme-
diate control point as defining the connection between the
start and end points. In the neural network case a source
node and a destination node are taken as input, and the out-
put as the resulting connection weight. Here we take a start-
ing point and an end point as the input, and the output is
the resulting intermediate control point. The two substrate
layers in this case are arranged in a ring, where the values
of the second layer are identical to the first but shifted two
places in the clockwise direction, creating pairings of start
and end points. Each of these pairings are then given to the
CPPN which outputs the x and y coordinates, weight value,

1not shown in Figure 1

Figure 1: Shape expression using a pixel(left) and
NURBS(right) representation. Note that a pixel
representation would typically be expressed with
far higher resolution, here, for illustrative purposes,
only 9 cells are shown.

1198

and corresponding knot of the intermediate point. This pro-
cess is illustrated in the right half of Figure 1.

The output of the CPPN is mapped directly to the value
of the x and y of the control point, as weights cannot be
negative they are mapped to a value between 0 and 2. The
values of the knot vector of a NURBS curve must be ascend-
ing, so the knot value is computed as the sum of the CPPN
output and the knot value of the previous control point. As
the knot values are locations within line space, they must
be scaled to begin at 0 and end at 1.

The use of an indirect encoding allows us to easily adjust
the resolution of the output, adding control points in the
NURBS case and increasing the number of pixels in the
pixel case. This allows us to begin by optimizing simpler
shapes and scale up to produce more complex designs. This
complexification could be done in an adaptive way, triggered
when a solution reaches a certain level of precision, or when
the population has stagnated. In order to easily examine
the effects of this complexification over multiple runs, we
increase the resolution of the output after a set number of
generations.

4. RESULTS
To compare the expressibility and ability of the two repre-
sentations to respond to evolutionary pressure we compare
them on a basic target matching task. A target shape is
given, and individuals are evaluated based on how closely
they match the target. To determine this we take the mean
squared distance from 150 points placed along the perimeter
of the target shape to the evolved shape. In addition, a fit-
ness penalty is applied according to distance of the farthest
point on the evolved shape to the target shape. This penal-
izes the evolution of shapes which cover the target, but also
have extraneous sections which do not match it.

We compare the performance of the representations on two
target objects: a circle, which is symmetrical in every axis
and does not contain any corners, and a 2D silhouette of a
vehicle, which is neither symmetrical nor smooth. A popu-
lation of 50 CPPNs, with no hidden nodes, and inputs fully
connected to outputs, were initialized with random weights.
Available CPPN activation functions were: linear, squared,
square root2, absolute value, gaussian3, hyperbolic tangent,
cosine, and sin, all with equal probability.

One run is composed of 1000 generations, with the resolu-
tion of the output increased at generations 251, 501, and
751. The PixelCPPN used a 21X21 square grid, which in-
creased to 41X41, 81X81, and 121X121. The hyperNURBS
substrate begins as a 3X3 ring, which increases to 5X5, 7X7,
and 9X9. All substrate values in both cases were evenly
spaced between -1 and 1. The mean squared error of the
best performing individuals over 30 runs of each algorithm
on each target are compared.

In both the regular and irregular cases the NURBS rep-
resentation outperforms the pixel representation. Though
PixelCPPNs which produce a circular pattern appear, the

2for negative values -1*(sqrt(abs(x)))
3sigma = 1, mean = 0

Figure 2: Mean squared error of highest fitness
shapes produced by pixel and NURBS representa-
tion. Note: Both error and generations are in log
scale, with the first 100 generations omitted for axis
scaling purposes.

precision is limited by the discretization of the pixel grid. In
contrast the NURBS based representation operates in con-
tinuous space, and so has no such limitation. High perform-
ing (>0.999 MSE) solutions were found with both 33 control
points located roughly on the perimeter of the circle, as well
as with only 8 control points in a rhombus surrounding the
target.

Figure 3: Best performing shapes produced for
irregular vehicle target by PixelCPPN and Hyper-
NURBS representation.

The PixelCPPN representation struggled not only to repli-
cate the corners of the shape, but the basic border as well.
The majority of even the best performing individuals had
at least one border defined by the bounds of the workspace,
rather than the CPPN values. In constrast the NURBS

1199

representation quickly arrived at the basic shape, and in
further generations only relatively small adjustments were
made. The resulting best fit shapes for the irregular target
are shown in Figure 3.

Though increasing the resolution of the output only based
on the number of iterations is not ideal for optimization, it
allows us to clearly see its effect across multiple runs. As
can be seen in Figure 2 the PixelCPPN representation suf-
fered little negative effects from the transition, and a greater
resolution typically resulted in quickened convergence rate.
This is to be expected, as a higher resolution of pixels means
a higher discretization level and greater precision, and the
underlying pattern is unchanged.

This is not so with a NURBS curve. Thought the underly-
ing pattern is unchanged, adding additional control points,
even along an already existing curve, will alter the shape.
Adding control points resulted in a shape which was a de-
formed version of the original. In most cases the original
fitness was able to recover quickly, and with the additional
flexibility of control points, surpassed. Those individuals
whose control point pattern was not robust to this addition
of control points, for instance twisted shapes which were
able to cover most of the target perimeter without resem-
bling the shape, do not survive long at higher resolution. It
can be seen from figure 2, a more sophisticated mechanism
for determining the output resolution must be considered;
the increase in resolution cut short the optimization process
still in progress at the lower resolution.

5. CONCLUSIONS AND FUTURE WORK
We have presented a technique for evolving 2D designs based
on NURBS curves using the HyperNEAT algorithm. By us-
ing a NURBS representation we produce designs in a con-
tinuous space which can be easily understood and altered by
human designers. In addition to ease of use we have shown
that this alternate formulation responds more readily to evo-
lutionary pressure, and so is a step forward toward the use of
HyperNEAT not just for the creation of aesthetically pleas-
ing patterns, but for design optimization problems.

More sophisticated ways of altering the number of control
points expressed must be explored. This could be done ei-
ther with triggers, such as predefined levels of fitness or peri-
ods of stagnation, or based on the variance in the expressed
values as is done for hidden neurons in ES-HyperNEAT [7].
Though difficult to see from the mean values, the fitness level
of the highest performing solutions did increase quickly after
a resolution increase, while others had their fitness reduced.

In our naive approach the substrate values were always evenly
spaced, and the same along every dimension. An evolvable
substrate would allow areas of the shape which need higher
precision to contain more detail through a greater number of
control points, while maintaining broad curves when delicate
forms are not necessary.

One of the great strengths of indirect encodings is their
ability to express solutions at various resolutions. That in
many cases increasing the resolution resulted in a very dif-
ferent shape is symptomatic of deficiencies in the representa-
tion. Preliminary experiments showed that determining the

CPPN input based on the neighboring points in the sub-
strate performed better than using the point itself however,
in light of the difficulties this introduces in scaling the rep-
resentation, closer examination is required.

We have presented an approach for spline evolution in 2D,
the basic principles of which can be applied to the 3D case.
While transferring this to the 3D case may not be as simple
as adding another input dimension, as from pixel evolution
to voxel evolution, the first steps have been made. The
basic building blocks of 3D NURBS surfaces are patches,
themselves composed of splines. As progress in developing
the best way to represent and evolve the basic spline building
block continues, we will find ourselves closer to the goal of
detailed, complex, evolutionary design.

6. REFERENCES
[1] J. Clune and H. Lipson. Evolving 3d objects with a

generative encoding inspired by developmental
biology. ACM SIGEVOlution, 5(4):2–12, 2011.

[2] D. D’Ambrosio, J. Gauci, and K. Stanley.
HyperNEAT: The First Five Years. Growing Adaptive
Machines, 557:159–185, 2014.

[3] L. Dumas. CFD-based optimization for automotive
aerodynamics. Optimization and Computational Fluid
Dynamics, 05, 2008.

[4] Y. Jin. Surrogate-assisted evolutionary computation:
Recent advances and future challenges. Swarm and
Evolutionary Computation, 2011.

[5] L. Piegl and W. Tiller. The nurbs book. 1997.
Monographs in Visual Communication, 1997.

[6] S. Risi. A Compiler for CPPNs: Transforming
Phenotypic Descriptions Into Genotypic
Representations. Proceedings of the 2013 AAAI Fall
Symposium on How Should Intelligence be Abstracted
in AI Research, 2013.

[7] S. Risi, J. Lehman, and K. O. Stanley. Evolving the
placement and density of neurons in the hyperneat
substrate. In Proceedings of the 12th annual
conference on Genetic and evolutionary computation -
GECCO ’10, page 563, New York, New York, USA,
July 2010. ACM Press.

[8] J. Secretan and N. Beato. Picbreeder: A case study in
collaborative evolutionary exploration of design space.
Evolutionary Computation, 2011.

[9] H. Sobieczky. Parametric airfoils and wings. In Recent
Development of Aerodynamic Design Methodologies,
pages 71–87. Springer, 1999.

[10] K. Stanley. Compositional pattern producing
networks: A novel abstraction of development.
Genetic programming and evolvable machines, 2007.

[11] K. Stanley and R. Miikkulainen. Evolving neural
networks through augmenting topologies. Evolutionary
computation, 2002.

[12] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci. A
hypercube-based encoding for evolving large-scale
neural networks. Artificial life, 15(2):185–212, Jan.
2009.

[13] B. Woolley and K. Stanley. On the deleterious effects
of a priori objectives on evolution and representation.
Proceedings of the 13th annual conference on Genetic
and evolutionary computation, 2011.

1200

