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ABSTRACT
As an evolutionary approach to solve constrained multi-objective
optimization problems (CMOPs), an algorithm using the two-stage
non-dominated sorting and the directed mating (TNSDM) has been
proposed. To generate offspring, the directed mating utilizes use-
ful infeasible solutions having better objective values than feasible
solutions in the population. The directed mating achieves higher
search performance than the conventional mating which avoids us-
ing infeasible solutions in several CMOPs. However, since the di-
rected mating uses infeasible solutions, generated offspring tend
to be infeasible compared with the conventional mating. To fur-
ther improve the effectiveness of the directed mating by improving
the feasibility of generated offspring, in this work we propose a
method to control the crossed genes ratio in the directed mating. In
this method, we control the amount of genes copied from infeasible
parents to offspring in the directed mating. Experimental results us-
ing m-objective k-knapsack problem with 2-4 objectives show the
contribution of the directed mating for the search performance is
further improved by controlling crossed genes ratio.

Categories and Subject Descriptors
I.2.8 [Artificia Intelligence]: Problem Solving, Control Methods,
and Search—Heuristic methods; G.1.6 [Numerical Analysis]: Op-
timization

Keywords
multi-objective optimization, constraint-handling, directed mating

1. INTRODUCTION
Evolutionary algorithms are suited to solve multi-objective opti-

mization problems (MOPs) since a set of solutions to approximate
Pareto front can be simultaneously obtained from the population
in a single run [1]. To solve constrained MOPs (CMOPs) involv-
ing constraints, several constraint-handlings including the death
penalty approach, repair approaches of infeasible solutions, and ap-
proaches to evolve infeasible solutions into feasible ones have been
proposed [2]. We have focused on the last approach to evolve infea-
sible solutions into feasible ones and proposed an algorithm based
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on the two-stage non-dominated sorting and the directed mating
(TNSDM) [3].
TNSDM classifie the entire population into several fronts by the

two-stage non-dominated sorting based on constraint violation val-
ues and objective values, and the parent population is selected from
upper fronts. In the reproduction, TNSDM uses the directed mating
utilizing useful infeasible solutions having better objective function
values. To generate one offspring, a primary parent is selected from
the parent population, and solutions dominating the primary parent
are picked as candidate solutions for its secondary parent from the
entire population including infeasible solutions. Then, a secondary
parent is selected from the picked candidates by using a binary tour-
nament selection, and genetic operators are applied to the primary
and secondary parents. In this way, the directed mating utilizes
valuable genetic information of infeasible solutions to enhance the
convergence of each primary parent toward Pareto front.
Our previous study [3] showed that TNSDM using the directed

mating achieved higher search performance than CNSGA-II [4] us-
ing the conventional mating which avoids using infeasible parents.
So far, we have focused on ways to select parents on the concept
of the directed mating and proposed some variants of the directed
mating [5, 6]. However, there is a problem in the crossover oper-
ator combined with the directed mating, and this work focuses on
it. Since the directed mating utilizes infeasible solutions as parents,
generated offspring tend to become infeasible solutions compared
with the conventional mating which avoids selecting infeasible so-
lutions as parents. If the feasibility of offspring generated by the
directed mating can be improved, we can expect to further improve
the contribution of the directed mating for the search performance
in evolutionary constrained multi-objective optimization.
To further improve the effectiveness of the directed mating by

improving the feasibility of generated offspring, in this work we
propose a method to control the crossed ratio of genes in the di-
rected mating. In our previous studies [3, 5, 6], we have used the
conventional uniform crossover [7] with the directed mating. In
this crossover, almost half genes of an offspring are copied from
an infeasible secondary parent, and other genes are copied from a
feasible primary parent. If many genes of the infeasible secondary
parent are copied to the offspring, it would be infeasible. There-
fore, to increase the feasibility of offspring generated by the di-
rected mating, in this work we introduce a concept of the control of
the number of crossed genes (CCG) [8] and control the amount of
genes copied from infeasible secondary parents to offspring in the
directed mating. We use m-objective k-knapsack problems with
2-4 objectives and verify effects of the controlling crossed ratio of
genes in the directed mating.
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Figure 1: Directed Mating [3] Figure 2: Percentage of feasible offspring in all generated off-
spring (mk-KPs withm = 2 objectives and k = 6 knapsacks)

2. EVOLUTIONARY CONSTRAINED
MULTI-OBJECTIVE OPTIMIZATION

Constrained MOPs (CMOPs) are concerned with findin solu-
tionsxmaximizingm kinds of objective functions fi (i = 1, 2, . . . ,
m) subject to satisfy k kinds of constraints gj (j = 1, 2, . . . , k).
CMOP is define as{

Maximize fi(x) (i = 1, 2, . . . ,m)
Subject to gj(x) ≥ 0 (j = 1, 2, . . . , k).

(1)

Solutions satisfying all k constraints are said to be feasible, and
solutions not satisfying all k constraints are said to be infeasible.
The constraint violation vector v(x) is define as

vj(x) =

{
|gj(x)|, if gj(x) < 0
0, otherwise (j = 1, 2, . . . , k). (2)

Next, Pareto dominance between x and y is define as follows: If

∀i : fi(x) ≥ fi(y) ∧ ∃i : fi(x) > fi(y) (i = 1, 2, . . . ,m) (3)

is satisfied x dominates y on objective function values, which is
denoted by x ≻f y in the following. Also, a feasible solution x
not dominated by any other feasible solution is said to be a non-
dominated solution. The set of non-dominated solutions in the so-
lution space is called Pareto optimal solutions (POS), and the trade-
off among objective functions represented by POS in the objective
space is called Pareto front.
To solve CMOPs by using evolutionary algorithms, we need to

employ a constraint-handling mechanism which determines a way
to treat infeasible solutions in the optimization process. In this
work, we focus on a MOEA using the two-stage non-dominated
sorting and the directed mating (TNSDM) [3]. TNSDM employs
an approach to evolve infeasible solutions into feasible ones during
the solution search such as Constrained NSGA-II (CNSGA-II) [4].
The previous work [3] showed that TNSDM achieved higher search
performance than CNSGA-II in several benchmark problems.

3. TNSDM
TNSDM is designed based on the framework of NSGA-II [4].

The entire population R consists of the parent population P and
the offspring populationQ, i.e. R = P ∪Q.

3.1 Two-Stage Non-Dominated Sorting [3]
To select the parent population P from the entire population

R, TNSDM classifie R into several fronts Ff
1 ,F

f
2 , . . . by us-

ing the two-stage non-dominated sorting based on constraint viola-
tion values vj (j = 1, 2, . . . , k) and objective function values fi

(i = 1, 2, . . . ,m). As the result, upper front Ff
i with small index

i includes solutions having lower constraint violation values and
higher objective function values. The half of R is selected as the
parent population P from upper fronts while simultaneously con-
sidering the crowding distance (CD) [4].

3.2 Directed Mating [3]
To improve the convergence of solutions toward Pareto front,

TNSDM introduces the directed mating which utilizes useful in-
feasible solutions. Fig. 1 shows a conceptual figur of the directed
mating. In this figure all solutions in the entire population R are
distributed in the objective space, and feasible solutions belonging
to Ff

1 are the parent population P . First, a primary parent pa is se-
lected from the parent population P by using the crowded tourna-
ment selection introduced in [4]. In the tournament, two solutions
are randomly chosen from P , and the solution belonging to the up-
per front (with a lower front index number) becomes parent pa. If
both of them belong to the same front, the solution having a larger
CD becomes parent pa. Next, we pick a set of candidate solutions
M (= {x ∈ R | x ≻f pa}) dominating pa in the objective space
from the entire population R including infeasible solutions. If the
primary parent pa is feasible and the number of solutions in M
is more than or equal to two (|M| ≥ 2), the directed mating is
performed. Otherwise, the conventional mating is performed.
In the conventional mating, a secondary parent pb is selected

also from P by using the crowded tournament. That is, feasible
solutions are preferred rather than infeasible ones for both parents.
In the directed mating, a secondary parent pb is selected from

M dominating the primary parent pa. To select pb fromM, first
two solutions are randomly chosen from M, and the solution be-
longing to the upper front becomes pb. If the two solutions belong
to the same front, the solution with the larger CD [4] becomes pb.
In the example of Fig. 1, two solutions belonging to Ff

4 and Ff
5

are randomly chosen from M, and the solution belonging to Ff
4

becomes pb to mate with pa.
In the most of MOEAs for CMOPs such as CNSGA-II [4], fea-

sible solutions have a high priority to become parents after feasi-
ble solutions are found in the population. On the other hand, in
the directed mating, all primary parents are selected from P but
secondary parents are selected even from infeasible solutions dis-
carded in the selection of P if they dominate their primary parents
in the objective space. As shown in Fig. 1, although secondary
parent pb is infeasible, there is a possibility that pb has valuable
genetic information to enhance the convergence of primary pa to-
ward Pareto front since pb dominates pa in the objective space.
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Figure 3: The percentage of feasible offspring in all generated offspring by varying γ

3.3 A Problem in Directed Mating:
Low Feasibility of Generated Offspring

In our previous study [3], we showed that TNSDM using the
directed mating achieved higher search performance than CNSGA-
II [4] using the conventional mating in several benchmark prob-
lems. However, since the directed mating utilizes infeasible solu-
tions, generated offspring tend to become infeasible solutions com-
pared with the conventional mating which avoids using infeasible
solutions. Fig. 2 shows the percentage of feasible offspring in all
offspring generated by the conventional mating and the directed
mating in m-objective k-knapsack problems (mk-KPs) [9] with
m = 2 objectives, and feasibility parameters ϕ = {0.1, 0.3, 0.5}.
In this analysis, we employ the same parameters used in [3]. As
mentioned before, the conventional mating uses feasible solutions
if they exist in the population and avoids using infeasible solutions,
and the directed mating utilizes useful infeasible solutions having
better objective values than feasible solutions.
From the results in Fig. 2, we can see that the percentage of fea-

sible solutions generated by the directed mating is about half of the
one of feasible solutions generated by the conventional mating. Al-
though TNDSM using the directed mating achieves better search
performance than one using the conventional mating [3], the fea-
sibility of offspring generated by the directed mating is lower than
the conventional mating because the directed mating actively uti-
lizes infeasible solutions. If the feasibility of offspring generated
by the directed mating can be improved, we can expect to further
improve the effectiveness of the directed mating in evolutionary
constrained multi-objective optimization.

4. PROPOSAL: CONTROL OF CROSSED
GENES RATIO IN DIRECTED MATING

To further improve the effectiveness of the directed mating by
improving the feasibility of generated offspring, in this work we
focus on a constrained combinatorial optimization problem and a
crossover operator used with the directed mating.
For solving mk-KP, we have used the uniform crossover [7] to

generate offspring after two parents are selected by the directed
mating [3]. Generally, the uniform crossover swaps each gene of
two parents with the probability γ = 0.5 [7]. That is, almost half
genes of an offspring are copied from a primary parent pa, and
other genes are copied from a secondary parent pb. In the case of
the directed mating, secondary parents pb are infeasible. If many
genes of a secondary parent pb are copied to an offspring, it would
become an infeasible solution. Therefore, to increase the feasibil-
ity of offspring generated by the directed mating, in this work we

introduce a concept of the controlling the number of crossed genes
(CCG) [8] and control the amount of genes copied from infeasible
secondary parents to offspring in the directed mating.
For a primary parent pa and a secondary pb, their genes (vari-

ables) are presented by xpa = (xpa
1 , xpa

2 , . . . , xpa
n ) and xpb =

(xpb
1 , xpb

2 , . . . , xpb
n ), respectively. The genes of their offspringxo =

(xo
1, x

o
2, . . . , x

o
n) is obtained by the following equation.

xo
i =

{
xpb
i , if rand [0, 1] < γ

xpa
i , otherwise (i = 1, 2, . . . , n), (4)

where, rand generates a random real number in the range [0, 1], γ
is the user-define parameter to control the crossed ratio of genes in
the range [0, 1]. The CCG crossover with γ = 0.5 is equivalent to
the conventional uniform crossover. The amount of crossed genes
copied from infeasible secondary parents is decreased by decreas-
ing γ, then we can expect to increase the feasibility of generated
offspring because the copy of genes from infeasible secondary par-
ents is restricted. In contrast, the amount of crossed genes copied
from infeasible secondary parents is increased by increasing γ.
The above method is similar to the CCG crossover [8]. Actu-

ally, the CCG crossover was originally used to avoid too destruc-
tive variation in unconstrained many-objective optimization prob-
lems with more than three objectives because the genetic (vari-
able) diversity in the population is significantl increased in many-
objective problems. Therefore, both parents are feasible, and each
of them exchange a small number of genes with a small γ. On
the other hand, in this work, to restrict crossed genes from infea-
sible secondary parents and increase the feasibility of generated
offspring in the directed mating, we utilize the concept of the CCG
in evolutionary constrained multi-objective optimization.

5. EXPERIMENTAL SETUP
In this work, we usemk-KP [9] with n = 500 items (bits),m =

{2, 3, 4} objectives, k = 6 knapsacks (constraints) and feasibility
parameters ϕ = {0.1, 0.3, 0.5}. As genetic parameters, we use the
CCG crossover with crossover ratio Pc = 1.0, bit-fli mutation
with mutation ratio Pm = 1/n, and the population size is set to
|R| = 200 (|P| = |Q| = 100). The total number of generations
is set to T = 104 for each run. In the following experiments, we
show average (mean) results of 50 runs.
To evaluate the obtained non-dominated set of solutions, we use

Hypervolume (HV ). HV measures m-dimensional volume cov-
ered by obtained non-dominated set and a reference point r =
{0, 0, . . . , 0} in the objective space. Higher HV values denote
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Figure 4: Results ofHV by varying γ

better search performance in term of both the convergence and the
diversity of obtained solutions toward Pareto front.

6. RESULTS AND DISCUSSION
6.1 Feasibility of Generated Offspring
First, we verify effects of the CCG crossover on the feasibil-

ity of generated offspring in the directed mating. Fig. 3 shows the
percentage of feasible offspring in all generated offspring as the
parameter γ is varied. For each mk-KP, the result obtained by
the conventional mating with the conventional uniform crossover
(γ = 0.5) is also plotted as the horizontal line. From the results, in
the case of the conventional uniform crossover with γ = 0.5, we
can see that the feasibilities of offspring generated by the directed
mating are lower than the one generated by the conventional mating
in allmk-KPs. However, we can see that the feasibility of offspring
generated by the directed mating is increased by decreasing γ.
These results reveal that feasibility of offspring generated by the

directed mating can be improved by restricting genes crossed from
infeasible secondary parents with small γ.

6.2 Results ofHV
Fig. 4 shows the results of HV achieved by TNSDM using the

directed mating as the parameter γ is varied. For each mk-KP, all
the results are normalized by the result obtained by the conven-
tional mating with the conventional uniform crossover (γ = 0.5),
and its value is shown as the horizontal line.
From the results, firs we can see that there is the optimal γ∗ to

maximize HV in each mk-KP. When γ is decreased from γ∗, al-
though the feasibility of generated offspring is improved as shown
in Fig. 3, HV is deteriorated. This is because useful genetic (vari-
able) information of infeasible secondary parents to enhance the
solution search is decreased by decreasing γ even generated off-
spring become feasible solutions. Also when γ is increased from
γ∗,HV is deteriorated. This is because crossed genes from infeasi-
ble secondary parents are increased by increasing γ, and generated
offspring tend to be infeasible as shown in Fig. 3.
Furthermore, we can see that γ∗ to maximize HV depends on

eachmk-KP. In each of problems with a high feasibility parameter
ϕ = 0.5 and m = {3, 4} objectives, the highest HV is surpris-
ingly achieved by γ∗ > 0.5 which copies more than half genes
of infeasible secondary parents. In each of these problem, since
the feasibility of offspring generated by the directed mating is rel-
atively high as shown in Fig. 3, a highHV is achieved by crossing
many genes from infeasible secondary parents which have useful
genetic information to enhance the solution search.

7. CONCLUSIONS
To further improve the effectiveness of the directed mating in

evolutionary constrained multi-objective optimization, in this work
we proposed the control of crossed genes ratio in the directed mat-
ing. The experimental results usingmk-KPs showed that the feasi-
bility of offspring generated by the directed mating is improved by
decreasing the amount of genes crossed from infeasible secondary
parents to offspring. Also, we showed that the search performance
of the directed mating is further improved by controlling crossed
ratio of genes.
Since the concept of the CCG crossover used in this work can

be extend to some crossovers for continuous optimization prob-
lems, as a future work we will verify the proposed approach on
constrained continuous multi-objective optimization problems.
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