
A Hybrid MOGA-CSP for Multi-UAV Mission Planning

Cristian Ramirez-Atencia
Departamento de Ingeniería

Informática, Universidad
Autónoma de Madrid

Madrid, Spain
cristian.ramirez@inv.uam.es

Gema Bello-Orgaz
Departamento de Ingeniería

Informática, Universidad
Autónoma de Madrid

Madrid, Spain
gema.bello@uam.es

Maria D. R-Moreno
Departamento de Automática,

Universidad de Alcalá
Alcalá de Henares, Spain
mdolores@aut.uah.es

David Camacho
Departamento de Ingeniería

Informática, Universidad
Autónoma de Madrid

Madrid, Spain
david.camacho@uam.es

ABSTRACT
Mission Planning Problem for a large number of Unmanned
Air Vehicles (UAV) consists of a set of locations to visit
in different time windows, and the actions that the vehicle
can perform based on its features such as the sensors, speed
or fuel capacity. After formulating this problem as a Con-
straint Satisfaction Problem (CSP), we try to search the set
of Non dominated solutions which minimize the fuel con-
sumption and the makespan of the mission. To solve it, we
will use a Multi-Objective Genetic Algorithm (MOGA), that
will match the model constraints and use a multi-objective
function in order to optimize these objective variables.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—heuristic methods

Keywords
Unmanned Aircraft Systems, Mission Planning, Multi-Objective,
Genetic Algorithms, Constraint Satisfaction Problems

1. INTRODUCTION
Mission planning for Unmanned Aircraft Vehicles (UAVs)

[4] involves planning the actions that the vehicle must per-
form (loading/dropping a load, taking videos/pictures, etc.),
over a time period. These planning problems can be solved
using different methods to find optimal solutions but, as
the number of restrictions increases, the complexity grows
exponentially because it is a NP-hard problem. Some mod-
ern approaches formulate mission planning as a Constraint

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO’15 Companion, July 11–15, 2015, Madrid, Spain
c© 2015 ACM. ISBN 978-1-4503-3488-4/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739482.2768481

Satisfaction Problem (CSP) [1], where the tactic mission is
modelled and solved using constraint satisfaction techniques.

This work deals with multiple UAVs that must perform
one or more tasks in different locations. The solution plans
obtained should fulfill all the constraints given by the dif-
ferent components and capabilities of the UAVs involved.
In previous works [5, 6] the mission planning problem was
modelled as a Constraint Satisfaction Optimization Prob-
lem (CSOP) along with and optimization function designed
to minimize the fuel cost, the flight time and the number of
UAVs needed, and solved with Branch and Bound (B&B).

The main goal of this work is to present a Multi-Objective
Genetic Algorithm (MOGA) approach to solve this model
using a multi-objective fitness function. We will present two
different representations for this problem and compare them
in order to check which one gives better results.

This paper is structured as follows: section 2 describes
how a Misison is defined and the modelization of the prob-
lem as a CSP. Section 3 explains the development of the
MOGA-based solver for the model and the different repre-
sentations considered. Section 4 shows some experiments
performed in order to validate this algorithm. Finally, last
section presents conclusions about this work.

2. UAV MISSION PLANNING BASED ON CSP
UAV missions consists of a number n of tasks performed

by a team of m UAVs. Each task must be performed in a
specific area, time interval and needs several sensors. This
approach considers three different types of tasks: Taking
pictures of a zone, which requires a EO/IR Camera; Tak-
ing real-time pictures of a zone, which requires a EO/IR
Camera and a Communications Equipment, and Tracking
a zone, which requires a SAR radar.

On the other hand, the vehicles performing the mission
have some features that must be taken into account in order
to check if a mission plan is correct. These features include
the initial position (Latitude, Longitude), the initial fuel
(L), the available sensors and one or more flight profiles.
A vehicle’s flight profile specifies at each moment its speed
(Km/h) and fuel consumption rate (L/Km). The dif-
ferent flight profiles of a UAV are used depending on the
situation of the mission: climb or descent, normal flight, ...

1205

Figure 1: Example of assignment of a UAV u to tasks i and j.

Figure 1 shows an assignment of a UAV u to two tasks i
and j. In this example, we define the departure of the task
as the time when the UAV leaves its actual position to reach
the task, the start of the task as the exact moment when the
task is performed and the end of the task as the moment
when it is finished. In this assignment, it is necessary to
compute the distances from u to each one of the tasks and
between the tasks, and then take the fuel consumption rate
and speed from the flight profiles in order to compute path
and return durations and fuel consumptions.

In this approach, each task has a specific duration, and the
time windows will be obtained when a UAV is assigned all
the tasks it must perform and the order in which it performs
these tasks. So the variables of the CSP are the assignments
of each task to the UAV performing it, and the orders in
which tasks are performed. There exists additional variables
that are computed in the propagation phase of the constraint
solving, such as the times, durations and fuel consumptions
of the tasks. The main constraints of this model are:

1. Order constraints assuring two tasks assigned to the
same UAV have different order values, and that those
orders values are less than the number of tasks assigned
to the UAV performing the considered tasks:

order[t] <] {τ ∈ T |assign[τ] = assign[t]} (1)

2. Temporal constraints assuring the consistency of the
different time variables. We must assure that the start
time of the task is the sum of the departure time and
the duration for the path, and that the end time is the
sum of the start time and the duration of the task:

departure[t] + durPath[t] = start[t] (2)

start[t] + durTask[t] = end[t] (3)

Then, when two tasks are assigned the same UAV,
given their orders, we must assure that the departure
time for the second task is less or equal than the end
time for the first one:

assign[i] = assign[j] ∧ order[i] < order[j]

⇒ end[i] ≤ departure[j] (4)

Now, we compute the duration of the path for the first
task performed by the UAV u. Given the flight profile

used by the UAV in the path to the task, we compute
the duration of the path as the distance du→i from the
UAV to the task divided by the speed vu given by the
flight profile: durPath[t] = du→t

vu
.

Moreover, for each pair of consecutive tasks performed
by the same UAV, the duration of the path between
them is computed as the distance di→j from the first
to the second divided by the speed vu given by the

path flight profile of the vehicle, durPath[j] =
di→j

vu
.

Finally, we compute the return duration as the dis-
tance dt→u from the last task performed by the UAV
u divided by the speed vu given by the return flight
profile: durReturn[u] = dt→u

vu
.

3. Sensor constraints assuring UAVs carries the corre-
sponding sensors to perform a task. Let Su denote
the sensors available for the UAV u and St the sensor
required by the task t (performed by u), then:

St ⊆ Su (5)

4. Fuel constraints, in order to check the fuel cost for each
UAV. For each task t, we compute the fuel consumed
in the task performance by multiplying the duration of
the task, the speed vt and the fuel consumption rate
fuelRatet given by the sensors required flight profile:
fuelTask[t] = durTask[t]× vt × fuelRatet.
On the other hand, similarly to the temporal con-
straints used to compute the durations, we use the
path flight profile to compute the fuel consumed in
the path to the first task by multiplying distance and
the fuel consumption rate fuelRateu given in the flight
profile: fuelPath[t] = du→t × fuelRateu.

Similarly, for each pair of consecutive tasks, we have:
fuelPath[j] = di→j × fuelRateu.

And finally, for the last task t performed by the UAV
u, we have: fuelReturn[u] = dt→u × fuelRateu.

Now, we just constraint the sum of all fuel consump-
tion values to be less than the UAV’s initial fuel fuelu:

∑
t∈T

assign[t]=u

(fuelPath[t] + fuelTask[t]) + fuelReturn[u]

< fuelu (6)

1206

3. PROPOSED MOGA-CSP FOR MULTI-UAV
MISSION PLANNING

Genetic Algorithms (GAs) are stochastic methods inspired
by natural evolution and genetics. The complexity of the al-
gorithm depends on the codification and the operations used
to reproduce, cross, mutate and select the different individ-
uals of the population.

Given the big amount of solutions that the problem can
generate and the huge amount of constraints involved in the
search of solutions, we have decided to use a Multi-Objective
GA to solve the CSP modelled Mission Planning problem. In
this approach, we will develop a hybrid MOGA-CSP, where
the constraints of the problem will be applied as penalty
functions in the evaluation phase of the MOGA.

3.1 Encoding
Now we consider two possible representations for the UAV

Mission Planning Problem: the ordering representation and
the permutation representation. In the first one, an indi-
vidual of the MOGA will be formed by two rows of gene
strings T1T2T3...Tn, i.e. its chromosome. An example of
this representation is shown in Figure 2. The first row of
the chromosome represents the UAVs assigned to each task
Ti, while the second represents the orders of the tasks ac-
cording to their UAV assignment. With this representation,
the gene values in the first row are integers in the interval
[1,m], i.e. the UAV identifier; and the gene values in the
second row are integers in the interval [0,m− 1]. In the ex-
ample, we can see that tasks 1, 2 and 5 are performed first
(order 0), then task 4 (order 1) and finally task 3 (order 2);
so: UAV1 performs tasks 1, 4 and 3 in that order; UAV2
performs task 2, and UAV3 performs task 5.

Figure 2: Example of ordering representation with
5 tasks and 3 UAVs.

The second representation considered involves the second
row being a permutation, i.e. its values indicating an abso-
lute order of the tasks, independently of their UAVs assign-
ment. This way, we reduce the space of possible individuals
and avoid many invalid solutions. An example of this rep-
resentation can be shown in Figure 3. This example shows
that tasks have this order: first task 2, then 1, 4, 5 and fi-
nally 3. With this and the values from the first row, we can
obtain the same order values from Figure 2.

3.2 Fitness Function
Evaluation is computed in terms of a fitness function com-

posed by two check steps. First, for the given solution, it
handles that all constraints are fulfilled. If not, it acts as
a penalty function, giving the solution the worst possible
value so it would not be evolved in future generations. If
all constraints are fulfilled, the fitness function works as a
multi-objective function for the parameters of the model:

Figure 3: Example of permutation representation
with 5 tasks and 3 UAVs.

• The total fuel consumption of all the UAVs employed,
computed as: fuelCost =

∑
u∈U fuelConsumed[u],

where the fuel consumed by each UAV is:

fuelConsumed[u] =
∑
t∈T

assign[t]=u

(fuelPath[t] + fuelTask[t])

+ fuelReturn[u] (7)

• The makespan of the mission, computed as the max-
imum of the flight times of each UAV: makespan =
maxu∈U flightT ime[u], where the flight time of each
UAV is:

flightT ime[u] =
∑
t∈T

assign[t]=u

(durPath[t] + durTask[t])

+ durReturn[u] (8)

The multi-objective fitness function will compare the so-
lution tested with the stored solutions in order to obtain the
Pareto-Optimality Frontier (POF) [7]. In this approach we
have used NSGA-II [3], but there are other approaches that
could be used here, such as SPEA2 [8] or PESA-II [2].

3.3 Algorithm
In our approach, the selection consists of two steps: first,

a N elitist selection is performed for retaining a number N of
best individuals in the population; then, a roulette wheel se-
lection over these N individuals is performed to select those
that will be applied the crossover and mutation operators.

In this approach, a 2-point crossover is used to combine
the chromosomes of each pair of parents to generate a pair of
children. Finally, a uniform mutation operator will mutate
these chromosomes depending on a probability Pm (usually
low, ∼ 5%). This operator will help to avoid that the ob-
tained solutions stagnate at local minimums.

4. EXPERIMENTAL RESULTS
The Mission Scenario used in this experiment consists of

8 tasks to be assigned to 5 UAVs scattered throughout the
map. HALE has a EO/IR camera and a Communications
Equipment; MALE, all the three types of sensor; URAV, a
EO/IR Camera; UCAV, a EO/IR Camera and a SAR radar,
and TACT, a SAR radar.

In this approach, we have set up all the UAVs with the
same flight profile, consisting of a speed of 100Km/h and

1207

a fuel consumption rate of 0.15L/Km. Besides, all UAVs
have the same initial amount of fuel: 100L.

Now, in order to check the performance of the developed
algorithm, we first use a Multi-Objective B&B in order to
obtain the POF of this problem. We got that this POF
is composed of 6 different solutions. In this first approach,
we want to compare the two chromosome representations
explained in the previous section. For that, we will use two
measures of quality very used in evolutionary algorithms
comparison: hypervolume and generational distance [9].

First of all, we set the parameters of the MOGA to the
values shown in Table 1.

Table 1: MOGA setup.
Initial Population 1000
Elitism population 50

Mutation probability 5 %
Number of generations 100

With this, we execute the solver with each of the chro-
mosome representations a total of 50 times, then compute
these quality measures for each run, and finally return the
minimum, maximum and median of these measures for each
representation (see Table 2).

Table 2: Min, Median and Max Hypervolume and
generational distance of the 50 runs of the MOGA
solver for the two different encodings.

Representations Ordering Permutation

Hypervolume
Min. 0.5367 0.4037
Med. ∞ 0.5281
Max. ∞ 0.5378

Generational distance
Min. 0.0534 0.0088
Med. ∞ 0.0175
Max. ∞ 0.0648

In the execution of the solver for the first representation,
we obtained that most runs could not obtain even a valid so-
lution, so the Hypervolume and generational distance were
Infinity, as can be seen in the Median and Maximum row
of both measures in Table 2. It is then clear that the first
approach is not suitable for this kind of problem. On the
other hand, it can be seen that for the permutation repre-
sentation, we see that the minimum generational distance
obtained is quite good (although not the optimum), and in
general the range of generational distance obtained in the 50
runs are good. Similarly, the hypervolume measures gives
promising results for this problem.

5. DISCUSSION AND FUTURE WORKS
In this paper, we propose a hybrid GA-CSP approach to

search feasible solutions for a UAV Mission Planning model.
The presented model defines missions as a set of tasks to
be performed by several UAVs. The CSP model defines
several constraints, including order and temporal constraints
assuring that each UAV only performs one task at a time,
the needed sensors or the fuel consumption.

The MOGA proposal counts with a multi-objective fitness
function that penalizes the unfulfilled constraints and mini-
mize two objectives: the fuel consumption and the makespan

of the mission. We proposed two chromosome representa-
tions, and in the experimental phase we proved that the
order permutation is better for this kind of problem.

In future works, several selection, crossover and mutation
operators, as well as different Multiobjective Algorithms,
such as SPEA2, should be tested and compared to find the
best performing combination. On the other hand, we will
also compare this approach with other from the state-of-art
in terms of optimality of the solutions and runtime spent.

6. ACKNOWLEDGMENTS
This work is supported by: Spanish Ministry of Science

and Education under project TIN2014-56494-C4-4-P, Junta
de Comunidades de Castilla-La Mancha under project PEII-
2014-015-A, Comunidad Autónoma de Madrid under project
CIBERDINE S2013/ICE-3095 and Savier Project (Airbus
Defence & Space, FUAM-076915). The authors would like
to acknowledge the support obtained from Airbus Defence &
Space, specially from Savier Open Innovation project mem-
bers: José Insenser, César Castro and Gemma Blasco.

7. REFERENCES
[1] R. Barták. Constraint programming: In pursuit of the

holy grail. In Week of Doctoral Students, pages
555–564, 1999.

[2] D. W. Corne, N. R. Jerram, J. D. Knowles, M. J.
Oates, and M. J. PESA-II: Region-based selection in
evolutionary multiobjective optimization. In Genetic
and Evolutionary Computation Conference, pages
283–290, 2001.

[3] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm:
NSGA-II. Evolutionary Computation, 6(2):182–197,
2002.

[4] F. Kendoul. Survey of advances in guidance,
navigation, and control of unmanned rotorcraft
systems. J. Field Robot., 29(2):315–378, 2012.

[5] C. Ramirez-Atencia, G. Bello-Orgaz, M. D. R-Moreno,
and D. Camacho. A simple CSP-based model for
Unmanned Air Vehicle Mission Planning. In IEEE
International Symposium on INnovations in Intelligent
SysTems and Application, pages 146–153, 2014.

[6] C. Ramirez-Atencia, G. Bello-Orgaz, M. D. R-Moreno,
and D. Camacho. Branching to find feasible solutions in
Unmanned Air Vehicle Mission Planning. In Intelligent
Data Engineering and Automated Learning, pages
286–294, 2014.

[7] M. Torrens and B. Faltings. Using Soft CSPs for
Approximating Pareto-Optimal Solution Sets. In AAAI
Workshop Preferences in AI and CP: Symbolic
Approaches. AAAI Press, 2002.

[8] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2:
Improving the strength pareto evolutionary algorithm.
In Evolutionary Methods for Design, Optimisation, and
Control, pages 95–100, 2002.

[9] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and
V. G. Da Fonseca. Performance assessment of
multiobjective optimizers: an analysis and review.
Evolutionary Computation, 7(2):117–132, 2003.

1208

