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ABSTRACT

Cooperative co-evolution is a framework that can be used to
effectively solve large scale optimization problems. This ap-
proach employs a divide and conquer strategy, which decom-
poses the problem into sub-components that are optimized
separately. However, solution quality relies heavily on the
decomposition method used. In recent years, a number of
decomposition methods have been proposed, which raises
another research question: Which decomposition method
is best for a given large scale optimization problem? In
this paper, we focus on the selection of the best decomposi-
tion method for large scale fully non-separable problems.
Four decomposition methods are compared on a suite of
benchmark functions. We observe that the random grouping
method obtains the best solution quality on the benchmark
large scale fully non-separable problems.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization
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1. INTRODUCTION

Evolutionary algorithms (EAs) are meta-heuristics that
can be used to solve a wide range of optimization problems.
However, when the problem has a large number of decision
variables — large scale global optimization — it becomes diffi-
cult for an EA to find the optimal solution [1, 2].

Cooperative co-evolution (CC) [3] has been used with
some successes when tackling large scale global optimiza-
tion (eg. [4]). In CC, the optimization problem is divided
into sub-components that are evolved independently. The fi-
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nal solution is a concatenation of representatives from each
of the sub-components.

In recent years, there is an increased interest in solving
large scale problems. When using the CC framework, it
has been shown that the overall performance is correlated
with the decomposition method used [5, 4]. This raises the
following research question: Given a large scale optimization
problem, which decomposition method is the best?

In this paper, we focus on the selection of the best decom-
position method for large scale fully non-separable problems.
Many real-world and benchmark problems are large scale
fully non-separable. Four decomposition methods are inves-
tigated: random grouping (G) [6], delta grouping (D) [7],
differential grouping (DG) [4], extended differential grouping
(XDG) [8]. A detailed description of the four decomposition
methods will be given in Section 3. The four decomposition
methods are embedded in a CC framework to solve a suite
of benchmark large scale fully non-separable problems. We
observe that the G method achieves the best or comparable
solution quality on all of the benchmark functions.

The remainder of this paper is organized as follows. Sec-
tion 2 defines the large scale fully non-separable problems.
Section 3 describes the four decomposition methods in de-
tail. Section 4 sets up the experiments and analyses the
experimental results. Section 5 concludes the paper.

2. FULLY NON-SEPARABLE PROBLEMS

In this section, we describe the definition of large scale
fully non-separable problems.

We start by investigating the form of decision variable in-
teraction in large scale problems. We suggest that there are
two distinct types of variable interactions as shown in Fig-
ure 1. In Type I interactions, the variables interact directly
eg. x1 and z2 (or z2 and z3) interact directly. In Type II
interactions, the variables have a form of indirect interaction
eg. x1 and x3 are linked by z2. We call the former direct
interaction and the latter indirect interaction. The formal
definition of interacting types is listed below:

DEFINITION 1. In an objective function f()?), decision
variables x; and x; interact directly if 3 a candidate solu-
tion T, such that

of
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denoted by x; <> x;. Decision variables x; and x; interact
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Figure 1: Two types of decision variable interac-
tion. Type I: two variables interact directly with
each other. Type II: two variables interact indi-
rectly, that is they are linked via a third variable.

indirectly if for all candidate solutions,

of  _
axiax]’ =0,

(2)

and 3 a set of decision variables {xk1,..., 2t} C X, such
that x; < xr1 < ... & Xk <> x;. Decision variables
x; and x; are independent with each other if for all can-
didate solutions, (2) holds and } a set of decision variables

{Zr1,. .., 2} C X, such that ; <> Tp1 > ... © T & T5.

Consider the following example to further explain this def-
inition:

EXAMPLE 1. In the objective function: f(X) = (z1 —
x29)? + (z2 — x3)% + 3, X ¢ -1, 1]4, z1 and x2 interact
directly with each other (Type I), x1 and xs interact indi-
rectly with each other (Type II), x1 and x4 are independent.

The large scale fully non-separable problem is defined as
follows:

DEFINITION 2. In a large scale optimization problem, if
all of the decision variables interact (directly or indirectly),
it 1s large scale fully non-separable problem.

3. DECOMPOSITION METHODS

In this section, we describe the four decomposition meth-
ods used within the CC framework in detail.

The G method [6] randomly assigns decision variables into
sub-components. The number of sub-components is pre-
determined. In the beginning of each cycle, decision vari-
able allocations are exchanged to increase the probability of
assigning interacting decision variables into the same sub-
component. However, it has been shown that when the
number of interacting variables is greater than two, it is
unlikely to put all of them into the same sub-component [9].

The D method [7] assigns the decision variables into sub-
components in the evolutionary process. The number of
sub-components is predetermined. It calculates the delta
value[7] of each decision variable and places the decision vari-
ables with close delta values into the same sub-component.

The DG method [4] automatically assigns the interact-
ing decision variables into the same sub-component. When
changes in the fitness value caused by adding a perturbation
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to x; varies for different values of z;, then x; and x; are re-
garded as interacting decision variables. However the DG
method fails to capture indirect interaction [8].

The XDG method [8] can capture both direct and indirect
interaction between decision variables. XDG uses the same
technique to identify direct interaction with DG. In XDG,
after allocating decision variables that interact directly to
nominated sub-components, “overlaps” between subcompo-
nents are identified. That is, when an overlap is observed,
the sub-components that contain the same decision variables
are merged. This searching-merging technique is employed
to capture indirect interactions between decision variables.

4. EXPERIMENTS

In this section, numerical experiments are conducted to
investigate the following research questions:

Q1. What are the decomposition results obtained by the
G/D/DG/XDG methods?

Q2. Which decomposition method is the best method to
use when solving large scale fully non-separable prob-
lems when incorporated with a CC framework?

4.1 Methodology

To investigate the research questions, the 8 large scale
fully non-separable benchmark functions are used (See Table
1). Function f1 and f> are from the CEC’2010 special session
on large scale global optimization [10]. Function f3 to fs are
widely used benchmark functions. The original functions of
fa to fs are fully separable. Rotation operator is employed
to generate interaction between decision variables. For the
8 benchmark functions, the dimensionality d = 1000; the
domain is [~100, 100]%; the optimal solution is f(0) = 0.

To investigate Q1, the G/D/DG/XDG methods are se-
lected to decompose the benchmark functions. The parame-
ter value € was set to 1073, The sub-components formed by
G/D/DG/XDG on each benchmark function are recorded.
In addition, the number of function evaluations (FE) used
to decompose the problem is recorded.

To investigate Q2, Differential Evolution Cooperative Co-
evolution (DECC) is selected as the CC framework. DECC
uses SaNSDE [11] to optimize each subcomponent. The pop-
ulation size is set to 50. The maximal number of FE is set
to 3 x 10°, divided between the decomposition phase and
the evolutionary optimization phase. The G/D/DG/XDG
methods are incorporated into the DECC framework to solve
the benchmark functions. For DECC-G/D/DG/XDG, 25
independent runs are conducted for each benchmark func-
tion. The mean of the best solutions found in the fixed num-
ber of FE are recorded to evaluate the performance of the al-
gorithms. The two-sided Wilcoxon test with the confidence
interval of 95% is used to determine the significantly best
performance from the four algorithms in a pairwise fashion.

4.2 Decomposition Comparison

In this section, we present the decomposition results of
the G/D/DG/XDG methods on the 8 benchmark functions
(See Table 2). In Table 2, “Group” represents formed groups,
which is s X n, where s is the size of groups, and n is the
number of groups. “FE” represents the number of FE used
in the decomposition phase.

The G method randomly divides the 1000 interacting de-
cision variables into 10 groups, each with 100 decision vari-



Table 1: Benchmark functions

Func_ID Name Equation Domain Optimum
d i .
f Shifted Schaffer flz)=3 3 a7 [~100,100]¢ (0 = 0)
i=1j=1
d—1 d—1 .
fo Shifted Rosenbrock  f(z) = 3 100(z? — xi11)? + 3 (zs — 1)? [-100,100]¢ £(0 = 0)
i=1 i=1
d d .
fs Griewank f@) =1+ 555 > i — 1 cos [~100,100]*  f(0 = 0)
d —
fa Sharp Ridge f(z) = a1 + 1004/ > 22 [-100,100]¢ £(0 = 0)
i=2
d i -
fs Rotated Elliptic flz)=> 10%a=1 x? [-100,100]¢  £(0 =0)
i=1
d d .
fe Rotated Rastrigin =~ f(z) = 10d — 10 3 cos(27ax;) + > 7 [-100,100]¢  £(0 =0)
i=1 i=1
d ~
fr Rotated Alpine flx) = > |zisinz; + 0.1z [-100,100]¢  £(0 =0)
i=1
d d
Z z;" Z 2z, N
fs Rotated Ackley f(z) =20 —20exp —0.2 \/ =L —exp =t — +e [-100,100]" f(0=0)

Table 2: The decomposition results of the
G/D/DG/XDG methods on benchmark functions.

Table 3: The optimization results of the DECC-
G/D/DG/XDG algorithms on the benchmark func-

Func DECC-G DECC-D DECC-DG  DECC-XDG tions. Better performances are highlighted in bold.
Group 100 x 10 100 x 10 1000 x 1 1000 x 1 - N N N

i pp 0 0 2000 3008 Func DECC-G DECC-D DECC-DG DECC-XDG
Group 100 x 10 100 x 10 2 % 500 1000 x 1 fl 2.39e-04 1.486"1‘06 1016+05 820€+04

f2 g 0 0 501000 1001000 f 3.98e-06 2.8le+03 9.51e+02 5.40e+07

s 1%goup (1)00 x 10 (1)00 x 10 }83(1)0301 }88(1)0301 fs 3.10e-15 2.77e-15 1.62e+00 4.77e-01

S Grow 100X 10 100X 10 1000 x 1 1000 5 T fa 6.44e-11 1.05e-11 3.71e+03 2.54e+03

* FE 0 0 1001000 1001000 fs 2.21e-02 2.51e4+08  5.59e+07 5.35e+-07
Group 100 x 10 100 x 10 1000 x 1 1000 x 1 _

55 bm o o 2000 3008 fe 3.35e-14 1.63e+04 1.03e+05 1.14e+405
Group 100X 10100 X 101000 X T 1000 X 1 fr 3.16e-03 1.47e+04 6.58e+03 6.44e+03

fs g 0 0 2000 3998 fs 3.16e-13 2.15e+01 2.15e+01 2.15e+01
Group 100 x 10 100 x 10 1000 x 1 1000 x 1

fr pE 0 0 2000 3998
Group 100 x 10 100 x 10 1000 X 1 1000 x 1

fs P 0 0 2034 4030

ables, at the beginning of each cycle. It does not need any
FE in the decomposition phase.

The D method decomposes the optimization problem in
the evolution process. It places 100 decision variables into
one group according to the delta values. Therefore, it also
divides the 1000 decision variables into 10 groups, each with
100 decision variables. It does not need any extra FE in the
decomposition phase.

The DG method identifies the interaction between de-
cision variables before the evolutionary process starts. It
places all directly interacting decision variables into one group.
As shown in Table 2, on f1, f5, f6, fr and fs, DG success-
fully identifies all the 1000 decision variables as interacting
and places them into a large group. On f2, DG forms 500
groups, each with 2 decision variables. The reason is that
f2 is a Rosenbrock function, which contains indirect inter-
action. DG can not identify indirect interaction [8]. On f3
and f1, the number of FE used in the decomposition phase
is very large (1001000). The reason is that DG unexpect-
edly identifies all the 1000 decision variables as separable.
However, DG places all separable variables into one group.
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Therefore, DG also forms a large group with 1000 decision
variables on f3 and fj.

The XDG method obtains the same decomposition with
DG on the benchmark functions except f2. On fo, XDG
successfully identifies all decision variables as interacting and
places them in a large group. Note that the number of FE
used by XDG is greater than DG. The extra FE is used to
identify indirect interaction.

4.3 Optimization Comparison

In this section, we present the optimization results of the
DECC-G/D/DG/XDG algorithms on the benchmark func-
tions (See Table 3). In Table 3, the best results are high-
lighted in bold. The convergence plots of the four algorithms
on the benchmark functions are shown in Figure 2.

As shown in Table 3 and Figure 2, The DECC-G algo-
rithm achieves the best performances on 7 out of 8 bench-
mark functions. On function f4, DECC-G obtains compara-
ble result with DECC-D. The DECC-D algorithm achieves
the best results on function f3 and f4. Note that both G
and D divide the 1000 interacting decision variables into 10
groups, each with 100 decision variables. However, DG and
XDG places all the 1000 interacting decision variables into
one large group in most cases. It may indicate that when
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the number of interacting decision variables is large, it is
more efficient to divide them into several sub-components.

5. CONCLUSION

In this paper, we focus on the selection of the best de-
composition method for large scale fully non-separable prob-
lems. The G/D/DG/XDG methods are embedded in the
DECC framework to solve a suite of benchmark functions.
The experimental results show that the DECC-G algorithm
achieves the best or comparable results on all of the bench-
mark functions. We conclude that the G method should be
selected for large scale fully non-separable problems.

The scope of this paper is limited. On the large scale fully
separable or partially separable problems, it is not likely
that the G method is the best decomposition method. The
first step of future work is to select the best decomposition
method for any large scale optimization problem. More de-
composition methods should be included as the candidates.

The second step of future work is to select the best al-
gorithm for a given large scale optimization problem. This
paper is in the context of DECC framework. Other CC
frameworks should be included in the algorithm space. In
addition, other well-performed algorithms (not limited to
CC) should also be included in the algorithm space.
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