
Symbolic Regression by Grammar-based Multi-Gene
Genetic Programming

Jan Žegklitz
Czech Technical University in Prague

Technická 2, Prague 6, Czech Republic
zegkljan@fel.cvut.cz

Petr Pošík
Czech Technical University in Prague

Technická 2, Prague 6, Czech Republic
petr.posik@fel.cvut.cz

ABSTRACT
Grammatical Evolution is an algorithm of Genetic Program-
ming but it is capable of evolving programs in an arbitrary
language given by a user-provided context-free grammar.
We present a way how to apply Multi-Gene idea, known from
Multi-Gene Genetic Programming, to Grammatical Evolu-
tion, just by modifying the given grammar. We also describe
modifications which improve the behavior of such algorithm,
called Multi-Gene Grammatical Evolution. We compare the
resulting system to GPTIPS, an existing implementation of
MGGP.

CCS Concepts
•Computing methodologies → Supervised learning
by regression; Genetic programming;

Keywords
machine learning; symbolic regression; genetic programming;
grammatical evolution

1. INTRODUCTION
Symbolic regression (SR) is a method based on genetic

programming (GP) [6] that solves a regression task by evolv-
ing symbolic mathematical expressions as the models of the
given data. A successful solver of SR tasks is the multi-gene
variant of GP, MGGP, evolving a model in the form of lin-
ear combination of several nonlinear components. Except
GP, there are many other paradigms evolving models in the
form of analytical expressions, with more or less different
principles, which can also profit from the use of the multi-
gene approach. In this article we explore the possibility of
applying the multi-gene (MG) idea to one of those GP al-
ternatives, grammatical evolution (GE). After reviewing GE
and MGGP in Sec. 2, in Sec. 3 we propose a simple way of
turning a GE system into MGGE based solely on the gram-
mar manipulation. We also discuss the differences between

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’15, July 11 - 15, 2015, Madrid, Spain
c⃝ 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3488-4/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739482.2768484

MGGP and MGGE resulting from a different representa-
tion and operators. In Sec. 4 we experimentally compare
two variants of the resulting algorithm with GPTIPS, an
existing implementation of an MGGP system. Section 5
concludes the paper.

2. RELATED WORK
In the two following subsections we review the two key

components in our research, the Grammatical Evolution and
Multi-Gene Genetic Programming.

2.1 Grammatical Evolution
Grammatical Evolution (GE) [9] is a GP algorithm that

uses context-free grammars in Backus-Naur Form (BNF)
and simple linear genotypes for the representation of indi-
viduals, rather than trees as in ordinary GP. The form of
the solutions produced by GE is determined mainly by the
user-provided grammar. Thanks to this fact, the user has
full control over how the solutions look like. BNF grammar
can also be used to implement typing, allowing the algorithm
to behave like Strongly Typed GP [8].

2.2 Multi-Gene Genetic Programming
MGGP [5, 11, 10] is an extension to the classical GP uti-

lizing the power of least-squares linear regression.
In ordinary GP (in the context of symbolic regression),

a candidate solution is a single mathematical function that
takes rows of an N ×M feature matrix (N being the num-
ber of datapoints, M the number of feature variables) and
produces an N × 1 vector of estimated target variable.

In MGGP, each solution is formed by a linear combination
of one or more such functions, called genes. Such a solution
has a form

ŷ = b0 + b1g1(x) + b2g2(x) + ...+ bngn(x) (1)

where n is the number of genes in the particular solution.
However, the vector of coefficients b is not known and must
be found during the evaluation. Each gene is applied to the
feature matrix the same way as in the ordinary GP, produc-
ing an N × 1 vector gi (i is the number of the particular
gene). The output ŷ of the whole solution is then given by
the formula ŷ = Gb where G = [1 g1 g2 · · · gn] with 1 be-
ing an N × 1 vector of ones. The optimal coefficient vector
b can then be found using the least-squares estimation with
respect to the true target vector y:

b = (G⊤G)−1G⊤y (2)

1217

In practice the Moore-Penrose pseudo-inverse is used in-
stead of standard matrix inverse in Equation 2 because the
columns of G may be collinear (e.g. due to multiple genes
being effectively identical).
The advantage of MGGP is that the genetic search does

not have to find the linear parts as they are computed auto-
matically, and it just has to focus on capturing the nonlinear
characteristics of the solved problem.

3. MG GRAMMATICAL EVOLUTION
There is no reason the MG approach couldn’t be used

with other paradigms than pure GP, especially with GE.
We propose a new approach called Multi-Gene Grammatical
Evolution, or MGGE, which is a result of application of the
multi-gene principle to GE.
The most straightforward way of making the GE multi-

gene is by following exactly the same type of modification as
in MGGP: the individuals will not carry only one genotype
describing one expression, but more genotypes describing
the particular expressions. However, this modification re-
quires the inner workings of GE to be modified. Instead
of such modification, we took another approach which uses
already available tools to express the multi-gene nature.

3.1 MG individuals by grammar manipulation
In order to express a multi-gene individual by already

existing tools available in GE, we decided to incorporate
the

”
multigeneness“ into the grammar used by the GE al-

gorithm. We developed a simple procedue which takes the
original grammar, called base grammar, and transforms it
into a new grammar, called multi-gene grammar, which al-
ready provides rules for storing multiple genes. The proce-
dure is described in Algoritm 1.

Algorithm 1 Grammar manipulation procedure that trans-
forms a base grammar to a multi-gene grammar.

Input: a base grammar gb with start symbol S(gb), max-
imum number of genes Gmax

Output: a multi-gene grammar gmg with start symbol
S(gmg)
gmg ← gb (copy the base grammar)
add rule <gene> ::= S(gb) to gmg

add rule
<mg-start> ::= <gene> | <gene>#<gene>

| ... | <gene>#...#<gene> (Gmax-times)
S(gmg)←<mg-start>

The base grammar is transformed by being put
”
under“ a

new rule <gene>, and another new rule, <mg-start>, which
expands to all possible numbers of genes, is added to the
grammar and set as its start symbol. The # character is
used just as a textual separator of the genes. The parser,
of course, needs to be modified to cope with such modified
grammar.
By using the grammar modification, the GE algorithm

itself doesn’t need any modification to be able to work, only
the parser needs to be changed and the least-squares fitting
mechanism must be introduced.

3.2 MG crossover operators
In MGGP the crossover operator is probabilistically cho-

sen to be one of these:

• high (or gene) level crossover – one or more genes in
both parents are exchanged, some genes are deleted if
Gmax is exceeded

• low level crossover – picks one gene in both parents
and a subtree in each of those two genes is exchanged

But GE has its own set of possible crossover operators:

• ripple crossover – both parent genotypes are split into
two parts and the tails are exchanged

• subtree crossover – GP-like crossover but working on
the derivation tree rather than the parse tree; can be
performed directly with the linear representation [4]

The MGGE can then either be run as an ordinary GE
algorithm, i.e. using ripple or subtree crossover (or some
combination of them), or the operators from MGGP can be
adapted and used. The low level crossover is identical to
the subtree crossover except for a constraint that is needed
to force a subtree to be chosen at a non-terminal label that
is

”
below“ the <gene> rule to prevent accidentally swapping

whole genes. The high level crossover can be implemented
by modifying the subtree crossover:

• the subtrees are restricted to be rooted only in the
<gene> non-terminals

• more than one subtree can be selected in either parent;
all subtrees are then swapped

4. EXPERIMENTAL EVALUATION
To gauge the performance of MGGE, we performed a

series of experiments. The algorithm was tested on four
datasets, two artifically generated and two real-world ones.
The description of the datasets follows.

Sextic polynomial (6R): classical SR benchmark [7].
The dataset consists of 100 (x, y) pairs, x is sampled form the
interval [−1, 1], y is given by the formula y = x6− 2x4 +x2.

2D unwrapped ball function (2UB): The dataset con-
sists of 1000 (x, y) pairs, x is sampled using the 2D Halton
sequence [3], y is given by the formula y = 10

5+(x1−3)2+(x2−3)2
.

Forest Fires (FF): This dataset [2] retrieved from the
UCI repository [1] is a real-world regression dataset where
the task is to predict the burned area of the forest. All fea-
tures are numeric except the 3rd and 4th features which are
month (

”
jan“ to

”
dec“) and day (

”
mon“ to

”
sun“) respec-

tively. These were transformed to numbers by mapping the
month to the numbers 1 to 12 (

”
jan“ being mapped to 1,

”
dec“ being mapped to 12) and day to the numbers 1 to 7
(
”
mon“ being mapped to 1,

”
sun“ being mapped to 7).

Airfoil Self-Noise (ASN): Retrieved from the UCI repos-
itory, this is a real-world regression dataset where the task
is to predict a sound pressure level of an airfoil in a wind
tunnel experiment.

Note that our experiments focus solely on the ability of
the algorithms to fit the expression as closely as possible,
so no validation or testing datasets were used. Thus the
resultant models cannot be used as predictive models.

4.1 Algorithms
For each dataset we tested the following algorithms for

comparison:

• pure GE using ripple crossover (GE)

1218

• MGGE with ripple crossover (MGGE-r)

• MGGE with the multigene crossover operators (MGGE)

• GPTIPS2, a MATLAB implementation [11, 10] of MGGP
(GPTIPS)

parameter value
pop. size 100

crossover prob. 0.8
prob. of high level crossover (MGGE) 0.2

mutation prob. (per codon) 0.08
duplication prob. 0.1
pruning prob. 0.2
no. of elites 2

tournament size 4
max. no. of genes (MGGE-ripple, MGGE) 10

max. tree depth (GPTIPS) 18
max. mutation tree depth (GPTIPS) 10

Table 1: Settings of the tested algorithms. If a pa-
rameter is applicable to only some of the algorithms,
they are stated in the parentheses.

The settings of all algorithms is in the Table 1 as the most
of the parameters were set identically for all the algorithms.
For all algorithms we used Ramped Half’n’Half initializa-

tion [6] with maximum depth of 18 for GE (in terms of the
derivation tree) and GPTIPS (in terms of the expression
tree) and with minimum depth of 3 and maximum depth
of 20 for MGGE-ripple and MGGE (because of the extra
rules).
In all algorithms the same (base) grammar (see Figure 1)

was used. GPTIPS used an equivalent set of functions, i.e.
+, −, ·, ÷, sin(x), cos(x), arctan(x),

√
x, ex, lnx, |x|.

<E> ::= (<E><OP><E>) | <F>(<E>) | <C> | <V>

<OP> ::= + | - | * | /

<F> ::= sin | cos | arctan | sqrt

| exp | log | abs

<V> ::= x1 | x2 | ...

<C> ::= 0.1 | 0 | 1

Figure 1: Grammar used in experiments. The exp

and log are natural, i.e. ex and loge(x) respectively.

In all algorithms if an expression resulted in a mathemat-
ical error (e.g. division by zero) it received infinite fitness,
effectively killing such individual.

4.2 Results
The evolution plots for the problems 6R, 2UB, FF and

ASN can be seen in the Figures 2, 3, 4, 5 respectively.
It is more than clear that all the multigene algorithms

completely outperform the ordinary GE algorithm. This is
due to the least squares optimization which makes even bad
solutions good compared to those of GE.
GPTIPS outperformed both MGGE algorithms in all do-

mains. This may have several reasons. First of them is
the fact that GPTIPS works with Koza-style trees, while
GE-based algorithms work with linear chromosome (if ripple
crossover is considered) or with derivation trees, i.e. trees of

0 50 100 150 200

Generation

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

R
M
S
E

GE

MGGE-r

MGGE

GPTIPS

Figure 2: The evolution plot of the 6R problem. The
solid lines are the medians of 50 runs, the dashed
lines are the 1st and 3rd quartiles.

0 50 100 150 200

Generation

10
-2

10
-1

10
0

R
M
S
E

GE

MGGE-r

MGGE

GPTIPS

Figure 3: The evolution plot of the 2UB problem.
The solid lines are the medians of 50 runs, the
dashed lines are the 1st and 3rd quartiles.

the transcription process from the start non-terminal down
to the terminals (if subtree crossover is considered). The
second reason is the mutation operator. In GPTIPS, classi-
cal GP mutation is employed, i.e. replacing a subtree with a
randomly generated one. In GE-based algorithms the muta-
tion simply changed one codon to a different random num-
ber which is likely to cause the rest of the chromosome to
be interpreted in a different way.

We also note that if a wall-clock time was measured (which
we didn’t) instead of the number of generations, the results
could look differently. Also only single parameter setting
was tested; if the parameters were tuned for each algorithm
separately, the results could, again, look differently.

5. CONCLUSION AND FURUTRE WORK
In this article we proposed a method of transferring the

multi-gene principles to GE – MGGE – only by means of
transforming the base grammar in a way that it enables
encoding of multiple genes. We presented two variants of
MGGE, the first one being effectively a pure GE, the second
one using specialized multi-gene operators.

1219

0 50 100 150 200

Generation

10
1

10
2

R
M
S
E

GE

MGGE-r

MGGE

GPTIPS

Figure 4: The evolution plot of the FF problem. The
solid lines are the medians of 50 runs, the dashed
lines are the 1st and 3rd quartiles.

0 50 100 150 200

Generation

10
0

10
1

10
2

R
M
S
E

GE

MGGE-r

MGGE

GPTIPS

Figure 5: The evolution plot of the ASN prob-
lem. The solid lines are the medians of 50 runs,
the dashed lines are the 1st and 3rd quartiles.

We compared GE, both MGGEs and GPTIPS, an existing
implementation of MGGP, on four regression datasets. We
showed that the MGGEs outpeform the GE but are outper-
formed by GPTIPS. The reasons for this fact are not com-
pletely understood, but among the most likely causes are
the mutation operator and the fact that the GE algorithms
work with grammar, might be very different (depends the
particular grammar) than the Koza-style GP trees.

5.1 Future work
The structure of the grammar may have significant impact

on the behaviour of the algorithm, e.g. if the grammar con-
tains only a single non-terminal (except extra non-terminals
needed by MGGE) the subtree crossover is then equivalent
to the GP subtree crossover. However, the grammar we
used allowed e.g. to change an operator to a different one
with one subtree crossover. Investigation in the area of the
grammar structure and its influence on the performance is
needed.
In this article we tested the algorithms on low-dimensional

problems only. Dealing with high number of dimensions is

one of the current challenges in symbolic regression and the
algorithms need to be tested on such data too.

Another area of research are the operators. In our research
we used either the GE’s ripple crossover or the MGGP’s high
and low level crossover and in all GE-based algorithms we
used codon-level mutation. However, it might be interesting
e.g. to adapt ripple crossover to work restricted to a gene,
or to use a different mutation with less disturbing effects.

6. ACKNOWLEDGMENTS
Jan Žegklitz was supported by the Czech Science Founda-

tion project Nr. 15-22731S. Petr Poš́ık was supported by the
Grant Agency of the Czech Technical University in Prague,
grant No. SGS14/194/OHK3/3T/13.

Access to computing and storage facilities owned by par-
ties and projects contributing to the National Grid Infras-
tructure MetaCentrum, provided under the programme

”
Projects of Large Infrastructure for Research, Development,
and Innovations“ (LM2010005), is greatly appreciated.

7. REFERENCES
[1] K. Bache and M. Lichman. UCI machine learning

repository, 2013. http://archive.ics.uci.edu/ml.

[2] P. Cortez and A. d. J. R. Morais. A data mining
approach to predict forest fires using meteorological
data. 2007.

[3] J. H. Halton. On the efficiency of certain quasi-random
sequences of points in evaluating multi-dimensional
integrals. Numerische Mathematik, 2(1):84–90, 1960.

[4] R. Harper and A. Blair. A structure preserving
crossover in grammatical evolution. In 2005 IEEE
Congress on Evolutionary Computation, volume 3,
pages 2537–2544, 2005.

[5] M. Hinchliffe, H. Hiden, B. McKay, M. Willis,
M. Tham, and G. Barton. Modelling chemical process
systems using a multi-gene genetic programming
algorithm. In Late Breaking Paper, GP’96, pages
56–65, Stanford, USA, 1996.

[6] J. R. Koza. Genetic programming: on the
programming of computers by means of natural
selection, volume 1. MIT press, 1992.

[7] J. R. Koza. Genetic Programming II: Automatic
Discovery of Reusable Programs. MIT Press, 1994.

[8] D. J. Montana. Strongly typed genetic programming.
Evolutionary computation, 3(2):199–230, 1995.

[9] C. Ryan, J. Collins, and M. O’Neill. Grammatical
evolution: Evolving programs for an arbitrary
language. In Genetic Programming, volume 1391 of
Lecture Notes in Computer Science, pages 83–96.
Springer Berlin Heidelberg, 1998.

[10] D. P. Searson. GPTIPS2: an open-source software
platform for symbolic datamining. In A. H. Gandomi,
A. H. Alavi, and C. Ryan, editors, Springer Handbook
of Genetic Programming Applications. 2015. In press.

[11] D. P. Searson, D. E. Leahy, and M. J. Willis.
GPTIPS: an open source genetic programming
toolbox for multigene symbolic regression. In
Proceedings of the International MultiConference of
Engineers and Computer Scientists, volume 1, pages
77–80, March 2010.

1220

