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ABSTRACT

Designing soft robots is difficult, time-consuming, and non-
intuitive. Soft robot design faces two main challenges: struc-
ture and control. This research uses generative encodings to
grow structures and a vibrational mechanism to control loco-
motion. In this paper, we demonstrate the ability to success-
fully evolve soft robots that can move when vibrated. Soft
bodies are grown through a grammatical process and simu-
lated in the Bullet physics engine. We also briefly outline a
method of evolving scalable solutions that we are currently
investigating. It should be capable of generating soft robots
of various sizes that can move when vibrated.
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1. INTRODUCTION

Robots are becoming increasingly useful: automating phys-

ical tasks and performing beyond human capabilities of strength

and precision. Robots allow us to operate in environments
that can be hazardous for humans, such as performing search
and rescue missions at a failing nuclear facility. Typical
modern robots contain motors and are made of metal or are
comprised of rigid structures. However, soft robots can be
made entirely out of plastic, rubber, silicone, or a variety of
materials that allow them to be flexible and change shape
[16]. For example, a snake-like soft robot can change shape
to slither its way in between rubble of a collapsed building
to look for potential survivors [10]. Some robots are being
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Figure 1: A tetrahedral mesh that is grown using a
generative encoding. The robot grows a little larger
and more complex each time the rules of the encod-
ing are applied. One application of the ruleset can
also be referred to as a “face rewrite”. Picture from
[14].

designed to grasp objects of unusual shape or of a delicate
nature (like internal organs during surgery) [8, 2].

Designing soft robots is incredibly difficult. Designers face
two main challenges in soft robotics: structure and control.
The structure of a robot is highly dependent on its purpose,
and the control mechanisms are dependent on the structure.
Modify the structure of the robot and the control mecha-
nisms are useless. Modify the control mechanisms and the
structure may behave differently, rendering it useless. This
creates a “chicken and egg” problem that makes engineering
soft robots complex and time-consuming for humans [13].
This research uses generative encodings to tackle the struc-
ture problem and a simple vibrational mechanism to tackle
the control problem. We evolve the structure of the robot to
fit the vibrational mechanism, kept consistent between indi-
viduals. Our goal is to evolve the right structure to leverage
the vibrational mechanism as a source of locomotion.

2. BACKGROUND AND RELATED WORK

Researchers have investigated automated methods for de-
signing soft robots with genetic algorithms [13, 15, 4, 12].
To automate the selection process, researchers test designs
in computer simulation to avoid physically constructing ev-
ery generated robot.



Figure 2: An example of a tetrahedral mesh grown
using a generative encoding. Picture from [14].

2.1 Generative Encodings

A generative encoding is a set of rules that specify how
a robot should be constructed. Each generative encoding
represents a soft robot in a similar way that DNA can rep-
resent an organism. When an organism’s DNA is changed,
the traits that are expressed are changed. Similarly, when
the rules of a generative encoding are altered, the resulting
structure of the soft robot will be different. In this sense,
the generative encoding is the genotype, while the resulting
3D model is the phenotype.

Generative encodings have existed for awhile in the com-
puter science research community. Also known as formal
grammars and L-systems, generative encodings have been
used from natural language processing [6] to algorithmically
generating plant structures [11]. Hornby and Pollack used
generative encodings in combination with genetic algorithms
to evolve tables (like the furniture) [7]. They showed that
generative encodings produced better results at a faster rate
than its non-generative counterpart. Additionally, Cheney
et al used both generative encodings and direct encodings
to evolve soft-bodies [3]. They concluded that the gener-
ative encodings outperformed the direct encodings, noting
that the generative encodings evolved bodies with “homoge-
neous patches of materials akin to tissues” while the direct
encodings produced seemingly random designs.

An interesting property of generative encodings is that
they can create robots of various sizes from one ruleset. This
is akin to building a brick wall. If you have a set of rules for
laying bricks, and follow these rules for 10 bricks, you will
build a small wall. Using the same rules, you can lay 100
bricks to build a larger wall, or 1000 bricks to build an even
larger wall. Similarly with generative encodings, the more
times the rules are applied, the larger and more complex
the robot will grow. In this sense, one genotype can cre-
ate numerous phenotypes. Figure 1 illustrates this principle
well with a tetrahedral mesh. Researchers typically fix a set
number of times to apply the rules of the generative encod-
ing a priori when using them in conjunction with genetic
algorithms. However, this can evolve solutions that are not
scalable, a situation which is discussed further in Section
4.1.

2.2 Actuation Through Vibration

Since soft robots are made of flexible materials, the struc-
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Figure 3: Example rules used in a generative en-
coding for tetrahedral meshes. Each open face of a
tetrahedron is labeled and can have a rule applied to
it according to what the generative encoding speci-
fies. The process of evolving a generative encoding
modifies the set of rules to produce new designs.
Picture from [14].

tures naturally bend and deform slightly under a stress.
Conventional engineering of rigid structures tries to mini-
mize vibration and mitigate the effect of resonance frequen-
cies. For example, if a bridge vibrates and hits its reso-
nance frequency, the structure can collapse (like the infa-
mous Tacoma Narrows Bridge). However, researchers want
to exploit the flexible material properties of soft robots. For
example, researchers have successfully implemented vibra-
tionally based locomotion systems in tensegrity structures
[9, 1]. Tensegrity structures are comprised of tensile and
rigid components and are capable of deforming and chang-
ing shape. Vibrating the structures at certain frequencies
can cause them to move. Changing the frequency can alter
the direction or velocity that the tensegrity moves.
This inspires our work with soft robots.

3. PRELIMINARY RESULTS

This research uses generative encodings to represent soft
robot designs like the one in Figure 2. The generative en-
coding is designed to produce tetrahedral meshes [14]. This
was chosen because physics engines (PhysX and Bullet) rep-
resent soft bodies as tetrahedral meshes in simulation. Addi-
tionally, STL files used for 3D printing represent structures
as tetrahedral meshes, making it convenient to print and
test robots in the real world (see Figure 5). Each genera-
tive encoding is comprised of a different combination of the
rules depicted in Figure 3. Robots are grown by applying
the rules of the generative encoding multiple times (fixed a
priori), illustrated in Figure 1.

Robots are simulated in the Bullet physics engine (chosen
for its support of soft-bodies, extensive documentation, and
an active online community). Every robot is embedded with
a vibrational mechanism, represented in the simulation as a
mass that rotates around an axis. The vibrational mecha-



Figure 4: These are some robots that were created
and tested in simulation as part of the evolutionary
process. Each individual is represented by a differ-
ent generative encoding, each of which is comprised
of a different combination of the rules depicted in
Figure 3. Every robot is embedded with a vibra-
tional mechanism, represented in the simulation as
a pink mass that rotates around a red cylinder. The
red arrows indicate the position of the vibrational
mechanism, most clearly visible for the robot on the
bottom left.

nism is attached to the root tetrahedron and is set to not
collide with the soft-body. Some examples of the robots in
simulation are shown in Figure 4.

The fitness of each robot is determined by its displace-
ment in the XZ plane. This was chosen to promote the
development of designs that can travel large distances when
vibrated. To keep things simple, the path that the robot
takes is ignored; only start and end positions are consid-
ered. In order to discourage individuals from exploiting the
fitness function by simply falling over or rolling, we begin
to measure displacement after a brief time delay, allowing
structures to settle before evaluation. Parents for subse-
quent generations are chosen via fitness proportional selec-
tion. New individuals are created through mutation 60% of
the time and crossover 40% of the time. We have not tested
other rates of mutation and crossover at this time.

After running the experiments, we have successfully evolved
soft-robot designs that move when vibrated. The progress
of the evolutionary process is depicted in Figure 6.

4. FUTURE WORK

4.1 Scalable Generative Encodings

The current methods used to evolve generative encodings
do not create scalable solutions. Fixing a set number of
times to apply a ruleset a priori creates soft robots that are
only guaranteed to be fit for one size. Using the brick wall
analogy mentioned in Section 2.1, this would be like creating
a ruleset that only works well if you lay 1000 bricks. If you
use the same ruleset to lay 100 bricks, your wall is not guar-
anteed to be as good. Viswanathan and Pollack discussed
how preselecting a fixed size of a generative encoding can re-
tard evolutionary progress [17]. By not evaluating multiple
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Figure 5: A 3D printed robot designed by our gen-
erative encoding. A pager motor can be embedded
into the structure to vibrate it, testing how far the
design moves outside of simulation. Picture from
[14]
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Figure 6: Maximum, minimum, and median fit-
nesses of best individuals per generation across five
runs of the experiment. For this set of experiments,
each generative encoding was expanded 40 times.
We used a population of 10 individuals for each run.



phenotypes produced by the genotype, it can take more gen-
erations to achieve a specified level of fitness. Devert et al
discuss how evolving generative encodings is directly linked
to the Halting Problem [5]. The stopping criteria of the
developmental process is key for certain types of problems,
affecting the robustness and scalability of solutions.

We are currently investigating a method of creating scal-
able generative encodings, capable of producing robots of
various sizes that can move when vibrated. This method in-
volves assigning designs to categories (small, medium, large,
etc). Each generative encoding is evaluated by how far the
robots it produces for each category can move when vi-
brated. One design is deemed better than another if it can
dominate across all categories (pareto dominance). We hy-
pothesize that this method will allow us to evolve scalable
generative encodings.

4.2 Physical Testing

Another avenue for future research is applying this process
to physical robots. Evolved designs can be 3D printed and
embedded with a pager motor. Researchers can experiment
with different materials, or combinations of materials, and
see if they can accurately model these materials in simula-
tion. If printing and testing physical designs is streamlined
enough, we could start the process of “rapid prototyping”.
This could allow us to replace some of the simulation with
real-world experiments, providing a more accurate evalua-
tion for our genetic algorithms.

S. CONCLUSION

In this paper, we have described a method to evolve soft
robots that can move when vibrated, along with a generative
encodings to grow soft robots in an open-ended fashion. We
have also discussed how pareto evolution over developmental
time-scales may help address issues of scalability.

In upcoming work, we are looking forward to fabricating
soft robots using flexible materials like silicone and rubber,
as well as 3D printing them. These physical prototypes can
then be used to validate our experimental results.

Soft robots have incredible appeal in domains such as ur-
ban search-and-rescue. However, the coupled problems of
design and control need to be more fully addressed before
soft robots can have a tangible impact on society. Our re-
search is helping to address these issues.
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