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ABSTRACT 
In this work, the canonical distributed embodied evolution 
algorithm used to solve a collective task in which a team of Micro 
Aerial Vehicles (MAVs) has to do surveillance in an indoor area. 
In order to efficiently survey the arena, the MAVs need to locate 
themselves and keep track of the recent covered areas and to share 
this information with other robots. This self-localization is 
performed using an IMU and a camera by means of artificial 
landmarks that can be sensed using the onboard camera and the 
position of other MAV in sight. The accuracy in the location of 
each MAV arises as a dynamic parameter and has been included 
as part of the problem to solve. Therefore, the collective control 
system is in charge of organizing the MAVs in order to increase 
the surveillance efficiency which is also subject to maintain a 
suitable accuracy for each of the MAVs.  

Categories and Subject Descriptors 
I.2.11 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search– Heuristics methods.  

General Terms 
Algorithms, Navigation 

Keywords 
Embodied Evolution; Indoor Navigation; Collective Tasks 

1. INTRODUCTION 
Navigation on indoor scenarios is a widely studied topic in 
autonomous robotics. To navigate with success, the first issue to 
solve is the proper location of the robot which is a constrain that is 
frequently disregarded in situated collective robotics. If it is also 
required to perform an autonomous and decentralized navigation 
the location must rely on the onboard sensors of the robot, 
typically, in the case of a MAV, an inertial measurement unit 
(IMU), a camera, and distance sensors (infrared, ultrasonic, etc) 

The suitability of evolutionary algorithms in the design of control 
systems for teams of autonomous robots that exploit the 
coordination between them has been widely tested. One particular 
evolutionary paradigm which is very convenient to design this 
sort of collective systems when they required decentralization and 
are constrained to local interactions between robots, is the so-
called Embodied Evolution (EE). EE is inspired by natural 
evolution and therefore the individuals that make up the 

population are embodied and situated in an environment where 
they are forced to interact in a local, decentralized and 
asynchronous fashion. Hence, evolution in EE is open-ended, 
leading to a paradigm that is intrinsically adaptive and highly 
suitable for real time learning in distributed dynamic problems, 
like the one in this paper. EE interest has grown remarkably in the 
last decade, with several papers dealing successfully with 
different collective tasks, both in simulation [1] and real robots 
[2]. To the authors’ best knowledge, this work is the first attempt 
of using EE for coordinating a fleet of MAVs to perform optimal 
collective navigation where optimizing localization accuracy is 
fundamental to perform efficiently. 

2. CANONICAL dEE ALGORITHM 
The canonical dEE algorithm [3] generalizes the three basic 
processes of evaluation, mating and replacement. Moreover, in 
order to make it independent on the environment and specific 
task, the relevant evolutionary events have been replaced by 
stochastic variables, which follow specific probability functions.  

 Mating selection: it has been modeled as an event that is 
triggered by a uniform probability function that depends on a 
single parameter, the probability of mating, that is ௠ܲ௔௧௜௡௚ ൌ
ௌ೘ೌೣ

೘்ೌೣ
, where Smax is the maximum window size of the 

tournament and Tmax the maximum lifetime.  
 Selection policy: the probability of being eligible as a 

candidate for mating (Pelegibility) is defined through a function 
that is based on the fitness value 

 Genotypic recombination: a new intrinsic parameter is 
defined: the probability of using a local search strategy (Pls), 
that is, a mutation operator. It is a measure of the exploration 
and exploitation balance through the ratio between crossover 
and mutation frequency.  

 Replacement: the current canonical EE algorithm considers 
a fixed population size, therefore the replacement process in 
this case produces both, the removal of one current 
individual and the creation of a new one, and is modeled here 
as triggered by a replacement probability (Preplacement). This 
probability is defined based on a more intuitive and 
manageable parameter, which is the life expectancy (Texp): 

௥ܲ௘௣௟௔௖௘௠௘௡௧ ൌ 1/ ௘ܶ௫௣. Texp is defined for each individual in 
each time step based on its current fitness, which depends on 
its genotype and the genotypes of the others. 

3. EXPERIMENTAL SETUP 
The experimental setup consists in a simulated indoor surveillance 
task performed by MAVs. In order to reliably define the 
simulation (IMU and camera location estimation models), a real 
scenario was build which uses a Parrot ARDrone 2.0 and visual 
fiducial markers to allow the image based location. In particular, 
these markers are the AprilTags designed by the MIT. The use of 
artificial landmarks provides a drift-free location, unlike the IMU, 
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with a satisfactory position estimation accuracy. In order to 
improve the performance of the navigation and to enrich the 
collective problem, the same type of tags (AprilTags) were also 
attached to the body of the MAVS (mobile tags), which 
incorporates mobile landmarks to the scenario and the possibility 
of exchanging location accuracy between MAVs. The left image 
of Figure 1 displays a schematic representation of the task. 

The scenario used in simulation was created as a L2 (square length 
units) non-toroidal square area with L=768, which contains four 
fixed tags at one side, and 40 gatherer MAVs. The rest of 
parameters of the arena are the maximum speed for a MAV (Vmax 
= L/50), the default accuracy degradation (A = Vmax/16), and the 
ranges of detection for a fixed and mobile (Rfix = L/4 and Rmob = 
L/16). The arena is divided in cells that represent navigation units. 
Each cell has an exploration probability that depends on the 
accuracy of the MAV that explores it. This probability decreases 
gradually over time. With all this, the final objective of the 
surveillance task is for the fleet of MAVs to continuously cover 
the maximum uncovered area in the shortest time. The individual 
fitness function of each individual is calculated based on two 
variables: the exploration performance and the exchanged 
accuracy (location accuracy provided to the rest of the fleet). Each 
individual can be analyzed in terms of its sensors and control unit:  

 Sensors: available ‘explorability’ (uncovered cells in near 
and distant neighborhoods), accuracy available (distance and 
accuracy of the nearest tag) and current exploration level of 
the MAV (as a function of its location accuracy). 

 Control unit: discretizes the input space in 8 different input 
sets and decides between one of the following behaviors: 
 Explore the near neighborhood 
 Explore the distant neighborhood 
 Search a tag (increase accuracy) 
 Move apart from a tag 
 Stay still to share the available accuracy  

The canonical algorithm implementation was tested with the 
parameters shown in Table 1. 
 

4. RESULTS 
In Figure , in left side, the global exploration level is represented 
as the percentage of explored area of the total area, for each time 
step and for different levels of accuracy degradation, which 
represent different environmental conditions in the real scenario. 
In the right side of Figure 2 and in Figure 3, the task division  

 

performed by the population is displayed by representing the 
percentage of active behaviors in each time step for the three 
different degradation levels. It is interesting to note the important 
variation in the task division for the three different configurations. 
When the degradation is increased, gathering and sharing location 
accuracy becomes essential. Contrarily, when there is little or no 
degradation, exploration becomes a priority.  

 
Figure 2: Left: exploration level of the arena over time steps for the 
different accuracy degradation levels. Right: area chart of the active 
behaviors in the population for each time step with A = Vmax/16 

 
Figure 3: Left: area chart of active behaviors with higher accuracy 
degradation (Vmax/8). Right: area chart of active behaviors without 
accuracy degradation.  

5. CONCLUSIONS 
This work has shown the capability of the canonical Embodied 
Evolution algorithm to solve, on-line, a collective surveillance 
task with a fleet of autonomous MAVs. In this case, the 
optimization problem included the accuracy in the location of the 
MAVs as a new variable, leading to a coordinated control where 
the team must cover the scenario, while they are precisely 
positioned, by sharing their own location information. An 
emergent specialization has been observed in the final population, 
with the individuals performing three main sub-tasks.  
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Iterations 105

Population size 40 

Maximum 
lifetime (Tmax) 

1000 

Selection criteria 
(Pelegibility) 

Higher 
fitness 

Tournament max 
size (Smax) 

40 

Local search 
probability (Pls) 

0.99 

Chromosome 
length 

8x[1,1] 

Table 1. Parameters of the task 
Figure 1: Schematic 
representation of the scenario 


