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ABSTRACT
We describe the ‘Blackboard’ design pattern for metaheuris-
tics which allows multiple agents to combine their expertise
opportunistically to contribute towards a solution. Features
of the Blackboard pattern may include heterogeneity of so-
lution representations (e.g. both graph and permutation for
the TSP) and asynchronous processing, the latter render-
ing the traditionally hard distinction between ‘online’ and
‘offline’ activity less significant.

Categories and Subject Descriptors
I.2 [ARTIFICIAL INTELLIGENCE]: Problem Solving,
Control Methods, and Search—Heuristic methods
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1. INTENT
Allow multiple metaheuristics (potentially operating on

different types of solution representation) to co-operate to
solve a problem.

2. FORCES ACTING
NP-complete optimization problems do not admit of a sin-

gular a priori solution strategy which is “good enough, fast
enough”. This suggests that multiple metaheuristics, po-
tentially operating at different process granularities, might
usefully be combined. This is particularly the case when:

• One wishes to incorporate rich and varying forms
of domain knowledge. It is well known that domain
knowledge is key in making combinatorially-hard prob-
lems tractable [10]. However, it has proved challenging
to design metaheuristics that allow the incorporation
of arbitrary domain knowledge (i.e., ‘white-box’ infor-
mation) into the search process.
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While attempts have been made in the past to in-
crease the level of domain knowledge used, (e.g., Tabu
Search [6, 7] and Squeaky Wheel Optimization [8]),
there is no general and domain-agnostic method for
making domain knowledge available.

• A good solution strategy is opportunistically
data-driven.
According to the ‘No-Free-Lunch Theorem’ [14], when
considered uniformly across all ‘black box’ problems,
there is no single best metaheuristic. This has lead
to the development of so-called ‘hyper-heuristic’ ap-
proaches [2] that dynamically select from (and/or gen-
erate) collections of operators. It is traditional to con-
sider the selection/generation process to be driven by
the search trajectory, but the addition of richer domain
information to this trajectory (i.e., making it more
overtly data-driven) lacks systematic support across
metaheuristics in general.

• Solution states and operators are heterogeneous
Metaheuristic approaches traditionally employ a sin-
gular solution representation (e.g., either permutations
or graphs for the TSP, but not both simultaneously).
In many cases, search progress made with one rep-
resentation could be used as a starting point for an
alternative representation [13]. With respect to het-
erogeneity of operators, it is well-known that multi-
level approaches can offer benefits such as clear sep-
aration of concerns and increased modularity. Since
the increasing hierarchical levels of operator applica-
tion are likely to involve increasing computational cost,
this may be well-served by asynchronous processing of
computationally expensive computations.

3. THE SOLUTION
Introduced in [5], the structural and control patterns of

the blackboard architecture have been used successfully to
solve a variety of complex and under-specified problems [4].

A blackboard architecture maintains a collection of indi-
vidual agents or ‘Knowledge Sources’ (KSs) within a glob-
ally visible and accessible ‘blackboard’ or ‘workspace’ data
structure that contains both state of the search process and
any further annotations that might be helpful in directing
the search. A Knowledge Source can change the workspace
with the side-effect of guiding subsequent knowledge sources
to further add to the evolving solution(s). This opportunism
inherent in the blackboard model lends itself well to concur-
rency. Although inter-agent communication (as mediated
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via the workspace) is inherent within the model, a KS can
be entirely self-contained and requires no permission or assis-
tance from other KSs in the system to contribute to solution
state construction [4].

In the blackboard model, the integration of distinct sources
of domain-knowledge can be addressed by: a) interoperabil-
ity between collaborating agents via the shared workspace
b) the ability to asynchronously invoke operators at differ-
ent temporal scales. Individual KSs communicate via the
shared workspace in a manner which may be meaningful to
other KSs, which may then exploit this information at some
subsequent stage. In this scheme, each KS is considered to
be a black-box, in which the exact implementation of a par-
ticular unit of collaboration is unimportant: irrespective of
whether the implementation approach is an artificial neu-
ral network, integer programming, genetic algorithm etc.,
each KS can contribute to the solution at hand. Multi-
level search is particularly facilitated in blackboard systems
in that higher-level searches can proceed concurrently with
lower-level activity. This further simplifies the communica-
tion between complete and partial solution representations,
e.g. constructive KSs operating on partial solution state have
the option of making any resulting complete solution state
available to perturbative KSs.

An explicit control mechanism is used to guide the search
process by facilitating opportunistic changes to the black-
board data structure by online scheduling of Knowledge
Sources. The control mechanism selects a course of action
based on (i) the current state of the blackboard and (ii)
the historical and potential contribution of a ‘triggered’ KS
which claims to be pertinent to the solution at hand.

4. CONSEQUENCES

• Modularity
Modularity of Knowledge Sources provides a clear sep-
aration between control and the domain knowledge.
The orthogonalisation of both control and domain knowl-
edge means that different control strategies can be
‘plugged in’ without necessitating a change in the man-
ner in which domain knowledge is represented.

• Concurrency
Blackboard architectures allow different problem-solving
trajectories (paths through the search space) to be
followed concurrently [3, 13]. Within a blackboard
model, concurrent but individual knowledge sources
share knowledge of search trajectories via the workspace.
However, because of the bottleneck necessitated by the
mutual exclusion access to blackboard state, these ben-
efits are most applicable if the ‘useful work’ a KS does
in searching is large relative to the amount of access it
requires to the blackboard.

• Opportunistic Problem Solving
A blackboard architecture exemplifies opportunistic prob-
lem solving: the knowledge source to be applied can
be strongly guided by workspace state, resulting in a
method for solution generation that is highly domain-
driven [12].

• Accommodates dynamic introduction of infor-
mation
During run-time, when new relevant sources of infor-
mation become available (e.g., via landscape metrics
which are expensive to compute, or other machine learn-
ing activity on the search trajectory), this can activate
KSs that know how to take advantage of this informa-
tion.

• Interoperability of operators and solution rep-
resentations
The blackboard pattern builds upon the notion of syn-
tactic interoperability, defined as the capability of mul-
tiple systems/subsystems to communicate and exchange
data using a pre-specified format. Blackboard systems
provide syntactic interoperability through the use of
standardized representations of the elements of workspace
state. In this way, KSs are able to collaborate in
building a a shared representation, while nonetheless
remaining agnostic as to the internal mechanisms of
other KSs.

• Direct support for Multi-level search.
Multi-level search is readily supported by the black-
board model. For example, Booch et al. [1] describe
the application of a blackboard architecture to a crypt-
analysis problem, where KSs have specific expertise at
various hierarchical levels of (structural and tempo-
ral) granularity, viz. at the level of letter substitution,
the level of word substitution and the level of sentence
structure. Successive levels might reasonably be as-
sumed to require greater levels of computational effort,
but the implied concurrency mechanism can be used
to render such issues transparent if so desired.

5. EXAMPLES

• MAGMA: Multi-Agent Architecture for Meta-
heuristics
MAGMA [11] was designed as both a practical and a
research framework for metaheuristic techniques, wherein
metaheuristics can be seen as arising from the interac-
tions of multiple worker agents of various types, work-
ing at different hierarchical levels and granularities. In
this scheme, agents can be categorized based on the 3
primary architectural levels. Agents in the first level
(Level 0) are concerned with the construction of solu-
tions and Level 1 agents improve already constructed
solutions (i.e., act perturbatively). Level 2 agents are
responsible for providing high-level search strategies.
It is claimed by Milano & Roli [11] that this scheme
can easily accommodate existing metaheuristics ap-
proaches and also to provide a means to further ex-
tend them. A number of communication mechanisms
between these ‘heuristic agents’ are provided, includ-
ing a global blackboard and message-passing.

• Cooperative Multi-Blackboard Search
In work by Martin et al. [9], a blackboard architecture
is described in which each agent has a blackboard of
good edges it has identified and maintains. The agents
then share these good edges with each other.
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The system therefore essentially takes the form of a
multiple blackboard system where each agent’s black-
board can be considered as being its “own” view of the
search space.

• Hyper-heuristic Design Space
A concise example of the utility of the blackboard pat-
tern can be found in [13], where it is applied to boolean
satisfiability problems. Compared to token-ring and
proportional selection hyper-heuristics, the blackboard
variant was shown to produce significantly better re-
sults in all test case instances.
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