
Two-B or not Two-B?
Design Patterns for Hybrid Metaheuristics

Alina Patelli, Nelly Bencomo, Anikó Ekárt, Harry Goldingay and Peter R. Lewis
Aston Lab for Intelligent Collectives Engineering (ALICE)

Aston University, Birmingham, United Kingdom
{a.patelli2,n.bencomo,a.ekart,goldinhj,p.lewis}@aston.ac.uk

ABSTRACT
Real world search problems, characterised by nonlinearity,
noise and multidimensionality, are often best solved by hy-
brid algorithms. Techniques embodying different necessary
features are triggered at specific iterations, in response to
the current state of the problem space. In the existing liter-
ature, this alternation is managed either statically (through
pre-programmed policies) or dynamically, at the cost of high
coupling with algorithm inner representation. We extract
two design patterns for hybrid metaheuristic search algo-
rithms, the All-Seeing Eye and the Commentator patterns,
which we argue should be replaced by the more flexible and
loosely coupled Simple Black Box (Two-B) and Utility-based
Black Box (Three-B) patterns that we propose here. We
recommend the Two-B pattern for purely fitness based hy-
bridisations and the Three-B pattern for more generic search
quality evaluation based hybridisations.

1. INTRODUCTION
Metaheuristics have different traits, for example Simulated
Annealing promotes diversity by tolerating certain poor qual-
ity candidates, Genetic Programming exploits flexible repre-
sentations, evolutionary strategies are self-adaptive. Regard-
less of their nature – stochastic or deterministic, population
based or single solution, global or local – no search algo-
rithm is perfect. The No Free Lunch theorem states that, for
any non-revisiting search algorithm, “elevated performance
over one class of problems is offset by performance over an-
other class” [13]. As a result of this, search algorithms are
designed to solve particular classes of problems well rather
than to maximise applicability. Realistic problems, how-
ever, do not typically sit neatly into the class of problems
solved well by any single search algorithm. As an example,
gradient-based algorithms typically exploit a local optimum
better than evolutionary approaches, but are worse at lo-
cating promising optima in a multimodal landscape. How-
ever, solving a multimodal problem requires both the loca-
tion and the exploitation of optima. When attempting to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
GECCO’15 Companion, July 11–15, 2015, Madrid, Spain
Copyright c©2015 ACM 978-1-4503-3488-4/15/07 ...$15.00
DOI http://dx.doi.org/10.1145/2739482.2768501.

design an algorithm which harnesses the opposing strengths
of different search procedures, is useful to consider hybrid
approaches.

Hybrid algorithms combine two or more search techniques
and switch between them during the search process. For ex-
ample, memetic algorithms employ stochastic metaheuristic
global search procedures in tandem with local search meth-
ods. In this way, the advantages of the component algo-
rithms are combined in a unified, potentially more powerful,
platform. Multidimensional problems with nonlinear search
spaces and/or multiple local optima stand to benefit the
most from the application of hybrid metaheuristics. In such
domains, the search is likely to converge prematurely (in a
local optimum, due to loss of candidate solution diversity)
or not at all (improperly configured search operators). To
again use the memetic algorithm example, here the global,
population-based search is designed to address the issue of
premature convergence, while the local search procedure is
specifically aimed at finding the local optimum given a pre-
determined vicinity.

It is desirable that the logic used to switch between com-
ponent algorithms, namely determining when it is most ben-
eficial to apply one technique or another, is enacted auto-
matically. Ideally, this decision should be made according
to the particulars of the problem (local optima, nonlinear-
ity, etc.) as well as the internal state of the algorithm (time
spent searching, population diversity, quality of individuals
in the current population, etc.). Several valuable attempts
at configuring hybrid algorithms are documented in the lit-
erature, yet their common traits are yet to be distilled in a
design pattern.

To address this gap, we firstly extract and critique two de-
sign patterns from a range of state-of-the-art hybrid meta-
heuristics. We identify these as antipatterns, due to the
tight coupling between components. We then propose two
new design patterns to address the design flaws in the ex-
tracted patterns, both based around a black-box approach
to the management of component algorithms.

The two design patterns we propose capture different ways
state-of-the-art hybrid metaheuristics switch between sev-
eral search techniques during the search process. The first,
the Simple Black Box (Two-B) pattern simplifies the design,
when the switching logic requires only knowledge of fitness
values associated with candidate solutions during the search.
The second extends this by allowing switching decisions to
be made based on additional information about the state of
the search (such as population statistics in an EA). This is
achieved in a loosely coupled manner, through the proposed

1269

use of a generic search quality interface, based around the
idea of the current, possibly multi-attribute, utility of the
search. We therefore call this pattern the Utility-based Black
Box (Three-B) pattern.

The rest of this paper is structured as follows. In Sec-
tion 2 we briefly introduce example hybrid metaheuristics
from the literature, which serve to illustrate the patterns
subsequently described. In Section 3 we describe the ex-
tracted antipatterns, highlighting why current practice in
the implementation of hybrid metaheuristics typically em-
bodies poor design. Subsequently, in Section 4 we present
our two new patterns which avoid the issues in the extracted
antipatterns, and can be used depending on the type of run-
time information required by the algorithm switching logic.
Finally, in Section 5 we conclude the paper, with recommen-
dations for the effective use of the two proposed patterns,
and highlight required areas for future work in order to aid
their realisation.

2. EXEMPLARS
To better illustrate the structure and behaviour of all four
design patterns, we will use several running examples, briefly
described here.

Exemplar 1: Memetic GP. Our first exemplar is a
memetic algorithm that combines Genetic Programming (GP)
and Orthogonally Least Square (OLS) techniques [5]. The
former is employed to evolve the regressor-based structure of
nonlinear models, whereas the latter is tasked with comput-
ing the optimum model parameters. The algorithm decision
maker (swap) policy is fixed, as both techniques are applied
at each generation, only to different parts of the model.

Exemplar 2: Memetic MOEA. Our second exemplar
is an MOEA spliced with a deterministic local search tech-
nique [11] that promotes the survival of solutions situated
on the knees (regions of high importance for practitioners)
of the Pareto front. The local search technique (deployed at
every generation) uses a metric consisting in the weighted
sum of the objective values, where the weights are configured
in relation to a user-prescribed parameter.

Exemplar 3: GP with Simplification. Our third ex-
emplar applies algebraic expression simplification and ge-
netic programming to symbolic regression [3]. Genetic pro-
gramming is known to inherently lead to code growth, if no
specific measures are taken to prevent this. In the domain
of symbolic regression, long expressions can be simplified
without affecting their quality. However, applying simplifi-
cation to evolved expressions too frequently leads to loss in
solution quality. Therefore a suitable frequency of applying
simplification is empirically determined.

Exemplar 4: GP with Fitness Sharing. Our fourth
exemplar proposes the maintenance of diversity in genetic
programming populations by adaptively adjusting niche sizes
for fitness sharing depending on the current state of a pop-
ulation [4].

Exemplar 5: ARPSO. Our fifth exemplar is a variant
of Particle Swarm Optimization (PSO), Attractive and Re-
pulsive PSO (ARPSO) [12], which consists of two phases:
an attractive one in which the objective is to converge on a
high quality solution and a repulsive one in which the objec-
tive is to increase the swarm’s capacity to find new solutions.
Both of these phases are variants of PSO and the decision to
switch between them is based on the diversity of particles.

Exemplar 6: CPSO. Our sixth exemplar is a simi-

lar two-phase PSO hybrid variant of PSO, Chaotic PSO
(CPSO) [8]. In CPSO, PSO is used to explore the search
space and, after some user-defined criterion is met, a Chaotic
Local Search (CLS) operator is used to further optimise the
best known solution. In canonical CPSO, the decision to
switch between PSO and CLS is based on time (number of
iterations) and the cost of generated solutions.

Exemplar 7: Triggered Hypermutation. Our sev-
enth exemplar is the use of hypermutation [9] in an EA,
which is typically employed in dynamic optimisation prob-
lems [6] to ensure exploration in the face of change. Hy-
permutations are uncharacteristically large mutation opera-
tions, typically carried out infrequently, or for a short period
of time, while during normal operation smaller, more incre-
mental mutations are made. Hypermutations are typically
triggered, for example by the detection of a change in the en-
vironment, but hypermutations generated randomly, with-
out the use of any feedback from the search have also been
shown to be useful [7]. The classic change detection trig-
ger, which an adaptive algorithm uses to determine when to
switch from a standard mutation to a hypermutation in a
generational GA, is a detected drop in the running average
fitness of the best solution in each generation [2].

Exemplar 8: HyFlex. Our eighth exemplar is a frame-
work created with the goal of enabling practitioners to de-
velop and test combinatorial optimisation algorithms [10].
The environment provides a common software interface and
a collection of pre-defined, problem specific component heuris-
tics which may be dynamically plugged into the hyper-heuristic
under construction. The designer is freed to concentrate on
the high-level aspects of their solution, since the problem-
specific details are abstracted away.

3. EXTRACTED ANTIPATTERNS

3.1 The All-Seeing Eye Antipattern

3.1.1 Structure
The first extracted antipattern (which we call the All-Seeing
Eye) is illustrated in Fig. 1. The Manager implements a
custom algorithm (designed by the domain expert) that se-
lects between N available search methods, represented by
the Searcher i , i = 1..N components in the diagram. Ex-
amples of Searchers are: evolutionary techniques (e.g. ge-
netic algorithms/programming), deterministic procedures (e.g.
gradient-based, orthogonal regression, weighted sum min-
imisation), probabilistic methods (simulated annealing), non-
evolutionary, population based algorithms (particle swarm/
ant colony optimisation).

The Manager communicates with the concrete Searchers
through a consistent Searcher interface, allowing it to re-
quest the generation of new candidate solutions and to pass
them between Searchers for further optimisation.

Each concrete Searcher i publishes a representation of its
inner state (Model i , i = 1..N in the diagram) for the
Manager’s benefit. A Model will always contain the candi-
date solutions currently being acted upon by the Searcher
(e.g. the population in a population-based searcher or a sin-
gle solution for a gradient-based technique), but may also
store some Searcher-specific state (e.g. current neighbour-
hood structure and particle history in PSO).

The Manager feeds model information into its prepro-
grammed decision algorithm and selects the most appropri-

1270

Manager

Searcher

Searcher 1 Searcher N

Model 1 Model N

1

*

Figure 1: The All-Seeing Eye antipattern

ate searcher to apply at a given moment. The decision is
communicated through the Searcher interface. The flow of
information in the All-Seeing Eye can be illustrated through
the following examples.

3.1.2 Examples
In GP with Simplification, the Searchers are standard
genetic programming and arithmetic simplification, applied
as a mutation operator, with some frequency pre-determined
by the manager. The goal of arithmetic simplification is to
transform a candidate solution to an equivalent, but more
compact solution. The Manager accesses the model directly
to select individuals for simplification.

In ARPSO, both Searchers are PSO variants and share
the same Model, which the Manager accesses directly to
measure swarm diversity. In CPSO, one Searcher (PSO)
maintains a population of solutions, while the other (CLS)
maintains a single solution. The Manager accesses the Mod-
els directly in order to transfer solutions between them.

3.1.3 Consequences
Analysing the structure of the All-Seeing Eye, we can see
that each Searcher is coupled to its Model and that the
Manager is coupled to every Model. As a result of this,
we cannot replace one Searcher with another in a hybrid al-
gorithm unless their models are identical. The negative im-
pact on this can be seen in ARPSO in which the PSO-based
repulsive Searcher is ineffective in discovering high quality
solutions. Using another Searcher type during the repulsive
phase would seem the obvious way to address this issue but,
due to the coupling of the Manager and the Searchers, this
would require the Manager to be modified as well. Riget
and Vesterstrøm’s suggestion is to neglect to evaluate the
objective function until the attractive Searcher is restarted;
however, if there were a pattern to combine and manage
searchers with different Models, it would be simple to use a
more appropriate Searcher in the repulsive phase.

In GP with simplification, without the Manager inter-
vening, the application of arithmetic equivalences could lead
to loops or to expressions which are not more compact than
the originals.

3.2 The Commentator Antipattern

3.2.1 Structure
In some hybrid algorithms, the Manager does not have di-
rect access to the Models but, instead, can request measure-
ments of Model state through an Evaluator. This is shown
in Fig. 2 which shows a single branch of the All-Seeing Eye
diagram, modified to include an Evaluator i , i = 1..N com-
ponent. Evaluators have a dual role: when the Manager
requests a measurement of some Model property (e.g. the
inter-generational fitness improvement rate of a population-
based model), the Evaluator must be able to make and re-
turn this measurement. They also hide the details of the
Model from the Manager, decreasing coupling. As the Man-
ager no longer needs to know how to measure properties of
the Model, its sole responsibility becomes Searcher selection,
which it bases on information provided by the Evaluators.

Searcher i

Model i

Evaluator i

Figure 2: The Commentator antipattern extends the
All-Seeing Eye with an Evaluator

3.2.2 Examples
Memetic GP and Memetic MOEA implement the Com-
mentator, by deploying two search techniques in alterna-
tion. In Memetic GP, Searcher 1 is a GP procedure and
Searcher 2 is OLS, whereas in Memetic MOEA, the two
searchers are a GA and a weighted sum minimisation tech-
nique, respectively. In both cases, the criteria employed by
the state evaluator originates from a high level policy au-
thored by the domain expert.

More specifically, in Memetic GP, the fact that regressor
structure and regressor parameters are evolved separately is
part of the domain knowledge. Thus, at every generation,
the evaluator will firstly assign the maximum score to the
GP searcher and secondly to the OLS one. This way, the
manager selects GP to evolve regressor structure and OLS
to compute the optimum parameters, in that order, at every
generation. Similarly, in Memetic MOEA, the criteria the
evaluator block implements is also expert knowledge, namely
the fact that solutions on Pareto knees are more valuable
to practitioners. The GA and weighted sum minimisation
searchers are applied in the same order, at every generation.

Note that the dedicated Evaluator block scores the as-
sociated searcher: Evaluator 1 assesses the GP Searcher

1271

in Memetic GP and the MOEA Searcher in Memetic
MOEA, whereas Evaluator 2 measures the quality of OLS
in Memetic GP and the weighted sum minimisation pro-
cedure in Memetic MOEA. The Manager only runs the
static switch logic between searchers, based on the scores
produced by the Evaluators. As this approach is somewhat
inflexible, these metaheuristics would benefit from applying
the improved design patterns described in Section 4.

GP with Fitness Sharing also implements the Com-
mentator, by varying the niche size parameter for fitness
sharing in genetic programming, depending on the popula-
tion’s diversity status. Essentially the same technique, i.e.
genetic programming, is applied, but with different niche
sizes. The Manager’s decision is on how to vary the niche
size in response to the diversity evolution. The Evaluator
is responsible for determining the diversity status based on
structural distances between genetic programming trees.

3.2.3 Consequences
Adding an Evaluator component decreases direct coupling
by hiding Model details from the Manager. However, Eval-
uators represent one extra layer of abstraction since the cri-
teria they employ need to be explicitly specified by domain
experts. Thus, there is no real reduction in complexity rel-
ative to The All-Seeing Eye, merely a shift of complexity
from the level of the Manager to that of the Evaluator. In
fact, though indirectly, the Manager is still highly coupled
to the Model with respect to two pieces of information: the
type of Model measurement it is possible to take and how
to compare measurements taken from different Models. As
a result, each Manger-Model pair requires its own Evalua-
tor, just as in the All-Seeing Eye, each Manger-Model pair
required some custom logic in the Manager.

We call this antipattern the Commentator, since the Eval-
uator provides a commentary on relevant aspects of the state
of the Model to the Manager. However, the Manager is still
required to know how to interpret the information provided
by the Evaluator.

4. PROPOSED DESIGN PATTERNS
In the previous Section, we presented and analysed two de-
sign patterns extracted from common implementations of
hybrid metaheuristics. However, in doing so we highlighted
issues relating to both coupling and cohesion of the designs.
In this section, we propose two alternate design patterns
which alleviate these issues. The first, the Simple Black
Box Pattern (Two-B), simplifies the design substantially,
though assumes that the switching mechanism makes de-
cisions based only on fitness information provided by the
searchers over time, and does not have access to any in-
ternal workings of the searcher (e.g. population statistics
in a population-based algorithm). If such additional in-
formation is needed in order to inform switching decisions,
then our second pattern, the Utility-Based Black Box Pat-
tern (Three-B) can be used. This pattern enables internal
model information to be considered in a loosely coupled way,
by associating individual searchers’ models with an evalua-
tor specific to that model, responsible for providing model
quality assessments to the manager, via a generic utility-
based interface. This way, even though evaluators are each
associated with a given searcher, they are also aligned (by
implementing the same interface), thus allowing consistent
and comparable assessment of different models.

4.1 The Simple Black Box (Two-B) Pattern

4.1.1 Intent
The main goal of this pattern is to enable the design of
hybrid algorithms in which the Manager and Searcher com-
ponents are reusable in other contexts by ensuring that the
Manager does not need to know about the inner details of
the Searcher.

4.1.2 Forces acting
Heterogeneous Searchers - A hybrid algorithm may con-
sist of Searchers of arbitrary, potentially heterogeneous, types.
As a heterogeneous collection of Searchers will have hetero-
geneous Models, a Manager cannot make the same types of
detailed measurements of each Model. Allowing the Man-
ager to make different types of measurements of each Model
creates coupling and prevents reuse (as in the All-Seeing Eye
and the Commentator).

4.1.3 Structure
The simplest way to reduce the coupling exhibited by the
All-Seeing Eye and the Commentator and to allow compo-
nent reuse is to remove the Manager’s ability to take mea-
surements of the Model (either directly or indirectly). We
suggest the pattern in Fig. 3 in which the Model compo-
nents have been encapsulated inside the searchers and have
become transparent to the Manager. Thus, the inner state of
the searchers is a “black box” with respect to the manager,
hence the name Simple Black Box Pattern (Two-B). The
Evaluator blocks have also been removed thus the feedback
loop present in both the All-Seeing Eye and the Commen-
tator has been removed altogether.

Manager

Searcher

Searcher 1 Searcher N

Model 1 Model N

1

*

Figure 3: Simple Black Box Pattern

4.1.4 Examples
Triggered Hypermutation already implements the Two-
B pattern. Its switching logic suits the Simple Black Box
pattern, since the Manager does not require any knowledge
of the model itself. The Manager simply keeps a running
average of the fitness values which the Searcher presents to
it. One could imagine alternative triggers, based on popula-
tion metrics, for example hypermutation could be triggered
when population diversity drops below a threshold. This
would not be suitable for the simple Two-B pattern, since
such information is not available.

The aim of ARPSO is to switch Searchers when search
capacity is lost. In its standard form, it bases this decision

1272

on measurements of particle diversity and so requires knowl-
edge of its Searchers’ Models. However, Van Den Bergh
proposes the Objective Function Slope measure as a way
to detect loss of search capacity [1]. This measure is based
solely on the cost of the best solutions in successive itera-
tions and so a variant of ARPSO based on the Objective
Function Slope measure would be suitable for implementa-
tion using the Two-B pattern. Canonical CPSO does not
require direct model measurements, basing the decision to
switch between Searchers on time (number of iterations) and
fitness and so would also be suitable for the Two-B pattern.

Memetic GP and Memetic MOEA would benefit from
implementing Two-B instead of the Commentator as the
searcher switch logic they implement is static. Thus, the
evaluator blocks can be eliminated altogether without any
impact on the behaviour of the manager.

Similarly, GP with simplification would benefit from
the Two-B pattern, as the switching logic does not need to
rely on any knowledge of the model, the manager decides
on applying simplification at pre-defined regular intervals
and with a set probability. If the model is embedded in
the searcher, it becomes the arithmetic simplifier’s internal
responsibility to ensure that the simplified solution is indeed
more compact than the original.

4.1.5 Consequences
Encapsulating models inside searchers and eliminating eval-
uators decreases structural complexity as it removes two lay-
ers of abstraction, relative to the Commentator. This design
choice also loosens coupling as there is no direct connec-
tion between the models and the manager. This decoupling
would allow for the Searchers used within a hybrid algorithm
to be changed without modification to the Manager. The
disadvantage of Two-B is behavioural - this configuration
restricts the possible types of hybridisation as the Manager
cannot make decisions based on Searcher state.

4.2 The Utility-based Black Box (Three-B)
Pattern

4.2.1 Intent
The main goal of this pattern is to allow a Manager to
make informed decisions based on the suitability of its
Searchers for the given problem, while allowing the reuse of
Manager and Searchers as components in other hybrid al-
gorithms, without the Manager knowing the details of the
inner working of Searchers or how their quality is assessed.

4.2.2 Forces acting
As in Two-B, a hybrid may be comprised of Heteroge-
neous Searchers. Managers cannot make different types
of measurements of different Models without becoming cou-
pled to them, preventing reuse.

Performance Prediction - In some scenarios (e.g. dy-
namic problems, complex fitness landscapes, hybrids con-
sisting of multiple Searchers) the fitness of solutions gener-
ated by a Searcher in the past may be a poor predictor of
its future performance. Indeed, if a hybrid can only select a
searcher based on past performance, then it has no basis for
choosing an initial searcher. To allow high quality decisions
about which Searcher to deploy given the current problem
state, it may be necessary to give the Manager more infor-
mation about Searcher states.

Manager

Searcher

1

*

Searcher 1 Searcher N

Model 1 Model N

Utility
Evaluator

Utility
Evaluator 1

Utility
Evaluator N

Figure 4: Utility-based Black Box Pattern

4.2.3 Structure
In order for a Manager to be able to manage an arbitrary
collection of Searchers, it must be agnostic as to the de-
tails of their Models. While our proposed Two-B pattern
allows this, it does not allow the Manager to choose be-
tween Searchers based on anything other than fitness in-
formation which may not be suitable for all hybrids. To
overcome this limitation, we propose the pattern shown in
Fig. 4 in which the Manager can make Model measure-
ments through a consistent Utility Evaluator interface. Due
to the potential heterogeneity of Models, the Utility Eval-
uator cannot be capable of making all the measurement
types possible through Evaluators in the Commentator as
this would require Utility Evaluators to know how to be
able to make an arbitrary number of measurements, some
inappropriate for their Model types (the Utility Evaluator
of a non-population-based Searcher should not, for instance,
be required to measure population diversity). Therefore,
every measurement type required by the Utility Evaluator
should be both generalisable to arbitrary Models and com-
parable between Models. It is the responsibility of each con-
crete Utility Evaluator to know how to make these measure-
ments for their corresponding Model. The responsibility of
the Manager becomes to decide which Searcher component
to utilise given the Utility scores for each Searcher on the
current problem state. Because the Searchers remain black
boxes from the perspective of the Manager, we describe this
as the Utility-based Black Box Design Pattern (Three-B).

4.2.4 Examples
The HyFlex framework can be viewed as an implementa-
tion of the Three-B pattern. The Manager has a black-box
view of the Searchers, but can access information about each
Searcher’s qualitative type. The focus of the framework is on

1273

combining low-level heuristics suitable for modifying a sin-
gle solution, so supported types include operators for local
search, crossover and mutation. Knowledge of these types
can be used to infer the suitability of particular low-level
heuristics either at design-time or, given the algorithm and
problem state, at run-time. Type information is comparable
between algorithms and so could be viewed as one method of
utility evaluation. Unlike the Three-B pattern, the frame-
work in [10] requires a shared model of the problem do-
main for the use of all other algorithm components, whereas
Searchers in Three-B maintain independent Models.

ARPSO uses population diversity as a proxy for search
capacity (the capacity of the algorithm to discover new,
high-quality solutions), with a low-diversity population less
likely to find good new solutions in future than a high-
diversity population. As discussed previously, population
diversity is not an appropriate quality metric, as it is not
applicable to non-population-based Models but, in princi-
ple, search capacity is. If a metric for comparing search
capacity between Model types was available, then ARPSO
could be implemented in terms of it.

GP with fitness sharing also measures population di-
versity to evaluate the search status and this serves as the
basis for the decision on what niche size to use for fitness
sharing. If this diversity evaluation was generalised to a util-
ity metric, additional component algorithms could be intro-
duced (i.e. alternative methods for limiting code growth or
having other objectives) and seamlessly selected between, so
that better quality solutions are obtained.

4.2.5 Consequences
Use of the Three-B pattern when creating hybrid meta-
heurisics would result in decreased design effort: the reusabil-
ity of Managers and Searchers would allow new algorith-
mic hybrids to be created quickly, easily and, potentially,
automatically. This less challenging design barrier would
simplify the tuning of hybrids to small classes of problems
and specific problem instances, increasing algorithmic per-
formance. However, to realise Three-B, Utility metrics com-
parable across Model types would need to be designed.

5. CONCLUSIONS AND FUTURE WORK
We extracted two so-called antipatterns for hybrid meta-
heuristics, the All-Seeing Eye and the Commentator, and
discussed their shortcomings in terms of complexity and cou-
pling, using seven exemplars from evolutionary algorithms,
genetic programming and particle swarm optimisation. In
response to these problems, we proposed two new Black-Box
patterns, Two-B and Three-B, that strike a balance between
the previously mentioned opposing forces. We discussed how
each exemplar would benefit from, or in the case of HyFlex
are conceptually similar to, one of these new patterns.

We propose that Two-B is applied in situations where
purely fitness based selection is applied to decide between
the different searchers. However, Two-B has a behavioural
disadvantage: it restricts the possible types of hybridisation
as the choice of component algorithm cannot be based on
Searcher state. Therefore, when Searcher state should be
the basis for the decision on component algorithm and com-
parable utility scores for different searchers are available, the
Three-B pattern should be applied. Three-B also allows for
competition between various Searchers, thus simplifying the
decision logic of the manager.

In the future, we plan to focus on designing a standard
quality metric to solve the alignment problem between eval-
uator criteria and allow searchers to be arbitrarily combined
within the Three-B pattern.

6. REFERENCES
[1] F. V. D. Bergh. An analysis of particle swarm

optimizers. PhD thesis, University of Pretoria, 2006.

[2] H. G. Cobb and J. J. Grefenstette. Genetic algorithms
for tracking changing environments. In Proceedings of
the 5th international conference on genetic algorithms,
pages 523–530, 1993.

[3] A. Ekárt. Shorter fitness preserving genetic programs.
In Artificial Evolution, volume 1829 of LNCS, pages
73–83, 2000.

[4] A. Ekárt and S. Z. Németh. Maintaining the diversity
of genetic programs. In European Conference on
Genetic Programming, volume 2278 of LNCS, pages
162–171, 2002.

[5] L. Ferariu and A. Patelli. Genetic programming for
system identification. In P. Cong-Vinh, editor, Formal
and Practical Aspects of Autonomic Computing and
Networking: Specification, Development and
Verification, pages 135–168. 2012.

[6] H. Fu, P. R. Lewis, B. Sendhoff, K. Tang, and X. Yao.
What are dynamic optimization problems? In
Proceedings of the 2014 IEEE Congress on
Evolutionary Computation (CEC), pages 1550–1557.
IEEE Press, 2014.

[7] P. R. Lewis, P. Marrow, and X. Yao. A diversity
dilemma in evolutionary markets. In Proceedings of
ICEC 2011: The Thirteenth International Conference
on Electronic Commerce. ACM Press, 2011.

[8] B. Liu, L. Wang, Y. H. Jin, F. Tang, and D. X.
Huang. Improved particle swarm optimization
combined with chaos. Chaos, Solitons & Fractals,
25(5):1261–1271, 2005.

[9] R. Morrison and K. De Jong. Triggered
hypermutation revisited. In Proceedings of the 2000
Congress on Evolutionary Computation, volume 2,
pages 1025–1032. IEEE Press, 2000.

[10] G. Ochoa, M. Hyde, T. Curtois, J. Vazquez-Rodriguez,
J. Walker, M. Gendreau, G. Kendall, B. McCollum,
A. Parkes, S. Petrovic, and E. Burke. Hyflex: A
benchmark framework for cross-domain heuristic
search. In J.-K. Hao and M. Middendorf, editors, Evol.
Comp. in Combinatorial Optimization, volume 7245 of
LNCS, pages 136–147. 2012.

[11] L. Rachmawati and L. D. Srinivasan. Multiobjective
evolutionary algorithm with controllable focus on the
knees of the Pareto front. IEEE Transactions on
Evolutionary Computation, 13(4):810–824, 2009.

[12] J. Riget and J. S. Vesterstrøm. A diversity-guided
particle swarm optimizer - the ARPSO. Tech. Rep 2,
Dept. Comput. Sci., Univ. of Aarhus, Aarhus,
Denmark, 2002.

[13] D. Wolpert and W. Macready. No free lunch theorems
for optimization. IEEE Transactions on Evolutionary
Computation, 1(1):67–82, Apr 1997.

1274

