
Wave: Incremental Erosion of Residual Error

David Medernach
BDS Group

CSIS Department
University of Limerick

david.medernach@ul.ie

Jeannie Fitzgerald
BDS Group

CSIS Department
University of Limerick

jeannie.fitzgerald@ul.ie

R. Muhammad Atif Azad
BDS Group

CSIS Department
University of Limerick

atif.azad@ul.ie

Conor Ryan
BDS Group

CSIS Department
University of Limerick
conor.ryan@ul.ie

ABSTRACT
Typically, Genetic Programming (GP) attempts to solve a
problem by evolving solutions over a large, and usually pre-
determined number of generations. However, overwhelming
evidence shows that not only does the rate of performance
improvement drop considerably after a few early genera-
tions, but that further improvement also comes at a con-
siderable cost (bloat). Furthermore, each simulation (a GP
run), is typically independent yet homogeneous: it does not
re-use solutions from a previous run and retains the same
experimental settings.

Some recent research on symbolic regression divides work
across GP runs where the subsequent runs optimise the
residuals from a previous run and thus produce a cumulative
solution; however, all such subsequent runs (or iterations)
still remain homogeneous thus using a pre-set, large number
of generations (50 or more). This work introduces Wave,
a divide and conquer approach to GP whereby a sequence
of short but sharp, and dependent yet potentially heteroge-
neous GP runs provides a collective solution; the sequence is
akin to a wave such that each member of the sequence (that
is, a short GP run) is a period of the wave. Heterogeneity
across periods results from varying settings of system pa-
rameters, such as population size or number of generations,
and also by alternating use of the popular GP technique
known as linear scaling.

The results show that Wave trains faster and better than
both standard GP and multiple linear regression, can pro-
long discovery through constant restarts (which as a side
effect also reduces bloat), can innovatively leverage a learn-
ing aid, that is, linear scaling at various stages instead of
using it constantly regardless of whether it helps and per-
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forms reasonably even with a tiny population size (25) which
bodes well for real time or data intensive training.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Program-
ming; I.2.6 [Artificial Intelligence]: Learning—Induction

Keywords
Genetic algorithms; Genetic programming; Fitness landscapes;
Performance measures; Machine learning; Semantic GP

1. INTRODUCTION
Performance curves of Genetic Programming (GP) [12]

typically rise steeply in the early generations before flatten-
ing. Later generations gradually accumulate small improve-
ments; however, these improvements spread over a large
number of generations and typically accompany code bloat [13].
Thus, there are diminishing returns as the run progresses.
Not surprisingly then, a lot of GP literature innovates to
improve the quality of GP runs, in particular, to extend
improvement enjoyed by earlier generations.

However, a question naturally arises; given that GP per-
forms most efficiently in the earliest generations, why bother
with the later generations at all? Instead, can GP not lever-
age the speed of the initial generations repeatedly through
multiple re-starts which build upon the progress made in the
previous run or runs?

A biological theory that supports this is the theory of
Punctuated Equilibrium [6] which suggests that evolutionary
changes are not necessarily uniform, but may instead emerge
from long periods of stasis followed by rapid change (char-
acterized for example by speciation). The biological litera-
ture reports multiple causes for such evolutionary changes,
for example, saltationism [5] whereby important mutations
quickly relocate offspring to a distant and better point on
the fitness landscape than the parent, ecological changes [16]
in the environment (and therefore in the fitness landscape)
which may encourage a species to specialize to a new re-
source which can result in a rapid and important pheno-
typic change, and/or peripatric speciation [15] where the ge-
ographical separation of asymmetric groups can allow the
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smallest to rapidly evolve phenotypic differences. The re-
search question then is whether we can effect artificial punc-
tuated equilibrium in GP through repeated restarts such
that multiple GP runs co-operate to produce an effective
combined solution.

We take the view that the interesting problems are so
difficult that every computing cycle expended on GP should
contribute to the eventual solution; multiple GP runs for
the sake of generating statistics are all well and good, but
when it comes to large scale problems rather than simple
benchmarking, no cycle should be left behind.

Cascading evolutionary computation (EC) runs have ex-
isted for some time (see section 2 for some background).
Wave, the proposed system differs from other approches be-
cause it embraces heterogeneity and leverages different pa-
rameters (population size, use of Linear Scaling, etc.) by
permitting the constituent runs to be significantly different
from each other. Similar to the manner in which a natural
wave goes through several periods, we aggregate improve-
ments, eventually ending with a joint solution which is the
sum of solutions presented at the end of each period. This
is similar to creating an ensemble, except that the joint so-
lution does not comprise of independently evolved compo-
nents.

This has some biological parallels where not only the envi-
ronment changes over time, but the evolving entities them-
selves cause the environmental changes; moreover, changing
target data after every period and using heterogenous set-
tings for each period causes a change in the fitness landscape.
This paper tests whether this metaphor works towards pro-
ducing an efficient GP system that uses computationally
cheap generations to match or even improve upon the re-
sults that GP normally produces over extended runs with
significant code growth. We find that Wave results in an
efficient GP system, which matches and often improves over
the standard GP and only at a fraction of the cost.

The paper reads as follows: section 2 introduces Wave;
section 3 discusses previous approaches to dynamic fitness
landscape in GP; section 4 discusses the experimental setup
and the problem suite used in this study; section 5 details
the results and discusses their significance; and, finally, sec-
tion 6 concludes the paper highlighting the achievements
and directing further work.

2. WAVE
Wave (see Figure 1) uses a collection of heterogenous GP

runs to create a dynamic fitness landscape. In GP, the fit-
ness landscape is the direct consequence of the data points
used to compute the training fitness. With Wave, instead
of doing one GP run (with a fixed parameter setting) over a
large number of generations, we use a succession of smaller
heterogenous (in terms of parameter settings) runs, and sim-
ply linearly sum their best results (without semantic oper-
ators). Each short run stops when it ceases to produce a
significant improvement. At the end of each of these short
runs we modify the fitness landscape so that the next one
builds on the previous work. These short runs could thus be
seen as periods of a wave progressively eroding the fitness
landscape, thus using a divide and conquer approach. Here,
at the end of each period the best evolved individual is used
to reset targets of our data-set, thus creating a new fitness
landscape; this resetting results by posing the residual be-
tween the target and the best evolved output as the new

target for the next period. The next period starts afresh
with a new population.

First we formalise the terms for the Wave system; this will
facilitate describing the experimental settings and discussing
the results.

A period (as shown in Figure 1) is similar to a normal
GP run (randomly initialized at the first generation and ter-
minated when the last generation is reached) except that at
the end of each period the best individual is used to com-
pute new target values; this creates a new fitness landscape
for the subsequent period. Thus, if t is the target value at
the start of a period, and f is the best evolved function for
this period, then t′ is the new data-set for the next period
such that t′ = t − f . We end a wave when MaxP periods
have been processed.

While Wave is our proposed system, a wave is a particular
collection of periods where the target varies across periods
in the manner described above.

Notice, although given the definitions, a standard GP run
can be described as a wave composed of a single period,
to avoid confusion, we do not describe such runs as waves;
instead, we refer to them as standard GP (GP) runs.

Figure 1: A simple Wave setup is depicted, where the pop-
ulation size and the number of generations stay fixed across
the periods. Although the joint solution simply adds the
best results of various periods, notice however, that each
best result is added to the joint result only if it decreases the
cumulative error thus far. Width of periods is proportional
to the size of the population, height of periods is propor-
tional to the number of generations.

2.1 Updating Target Values
As illustrated in Figure 1, the final solution of a wave

results from summing the outputs of the best individuals of
successive periods, where each period potentially optimises
a unique target data t′. We say potentially because some
times the target data may not be renewed for a new period.
This happens if the current period, optimising over a current
target set t, fails to produce an individual fi such that (fi−
t)2 < (0− t)2. In other words, adding f to the joint solution
retains (at best) or worsens the error of the joint solution.
In this case, we do not add fi to the joint solution (we deem
fi ineligible) and, instead, launch the next period to again
optimise over the same target set t. Therefore, fjoint =
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∑n
i=1(fi) where fjoint is the joint solution of a wave, n is

the number of periods that produced eligible functions and
fi is the function from such a period i.

2.2 Heterogenous periods
Key to Wave’s design is the use of heterogenous peroids.

Each wave can use completely different settings, even to the
extend of using different search algorithms, as long as the
output of the particular wave can be combined with the
others.

In this work we consider four aspects that we vary through-
out the entire run. These are the use of a flexible end point
for periods, varying the population size, the number of gen-
erations and alternating the use of Linear Scaling.

Figure 2: A wave is depicted. Its periods vary in popula-
tion size & number of generations (periods in black failed to
improve joint solution). Width of periods is proportional to
the size of the population, height of periods is proportional
to the number of generations.

2.2.1 Flexible period ending
We decide that a period should end if the best fitness

has not improved significantly during the last few genera-
tions. Using the punctuated equilibrium analogy we stop
a period during a static phase but not during a phase of
rapid change. Therefore, to decide whether we are in a
static phase, we compare the improvement over the last two
generations (current improvement) with that over the three
generations before the last two (previous improvement). If
the current improvement is less than 0.5% of the previous
improvement, we end the period. However, each period still
undergoes a certain minimum number of generations before
we take action. Therefore, the following condition formalises
the period stopping criteria:
gc > gm and
(BF (gc) −BF (gc − 2)) ≤ (BF (gc − 2) −BF (gc − 5))/200
where gc is the current generation, gm is a minimum number
of generations before a period stops and BF (gc) is the best
training fitness at generation gc.

2.2.2 Varying population size and minimum number
of generations

As Figure 2 shows, it is possible to vary the number of
generations and population size for each period. Given that

each problem with standard GP may require a different value
for these two parameters [20], varying them across different
periods of a wave may make sense. Thus, we observe the
effect of increasing the population size and the minimum
number of generations before stopping a period, but only
when the previous period failed to improve the fitness of the
joint solution. These changes are cumulative.

2.2.3 Alternating between using and not using Lin-
ear Scaling:

Linear scaling [11] optimises the slope and intercept of
an evolving function and has been effective on symbolic re-
gression problems. However, we question if it consistently
improves performance: in some experiments for this study,
standard GP outperformed scaled GP. Therefore, we also
report experiments where periods alternate between using
and not using linear scaling. In these cases the initial period
uses linear scaling1.

3. BACKGROUND
In this paper we investigate an approach to problem solv-

ing with GP which is analogous to ecological change in na-
ture. We propose modifying the fitness landscape in order to
make a problem more malleable for GP. This method could
either be seen as a way to introduce ecological changes with
a radical modification of the fitness landscape or as a form of
saltationism. The creation of a new population after modi-
fying the target that uses the previous evolutionary result as
a black box unmodifiable part of the individuals (which is bi-
ologically realistic, as elements which appeared early in the
evolutionary process are usually less likely to be modified),
is akin to a high amount of mutation in the hope of skipping
long periods of stasis out of the evolutionary process.

The Wave paradigm also offers an additional saving in
computational effort as there is no need to re-evaluate the
fixed (black box) sub-expressions. This provides the poten-
tial for increasing the total complexity of individuals without
additional cost. Relatively similar methods have also proved
to be efficient to solve time series problems [8]. Moreover,
different periods of Wave can use different GP settings, so
that the final joint solution emerges from a varied set of
evolutionary simulations. For example, in this paper, we
question whether linear scaling [11], a very successful aid to
symbolic regression with GP, should be used throughout or
only in alternate periods.

Outside the field of GP, the most similar method could be
cascade correlation (CasCor) [22], where hidden layers are
added to a previously trained artificial neural network and
are trained to reduce its residual error.

There is also some precedent in the GP literature for tak-
ing this approach. For example, Interleaved Sampling [3, 9]
creates an oscillating fitness landscape by alternating be-
tween different fitness measures every second generation.
Sequential Covering Genetic Programming (SCGP) [19] se-
quentially decomposes the initial Boolean problem by run-
ning new iterations of GP only on the unsolved points in
the training dataset and consequently on a new fitness land-
caspe. A similar approach has also been used to address
the class-imbalance problem in classification [7]. More gen-
erally, in EC based Novelty Search [14], the objective is to

1Exploratory experiments showed that Wave performs bet-
ter this way.
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Figure 3: A flowchart summarizing the different steps of Wave is depicted. On the settings used in this work activate perdiod
specific settings only occurs while alternating between using and not using Linear Scaling and increase number of generations
& population while varying population size and minimum number of generations.

continuously find novel solutions, and consequently the tar-
get landscape continues to change.

Unlike these methods, Sequential Symbolic Regression [18]
(SSR) tackles symbolic regression problems where the tar-
get output is not discrete. Like SCGP, SSR spreads the task
of approximating the training data across a number of GP
runs; each such run is termed an iteration. At the end of each
iteration, outputs of the original problem are modified based
on the use of a geometric semantic crossover [17] on the out-
put of the best evolved solution in the current iteration2.
Whereas Semantic GP combines individuals at random, SSR
optimises the effect of the geometric semantic crossover op-
erator in the next iteration by evolving the best match to
the curent solution to solve the problem; however, each iter-
ation is homogeneous and typically uses a large number of
generations (50 or 100). A key difference is Wave’s use of
heterogenous periods compared to the homogenous ones em-
ployed by SSR. Similarly, Wave’s periods are considerably
shorter 3 and are variable rather than fixed length. Further-
more, the best individual evolved at the end of a period is
added to the global solution only if it improves the fitness
of the combined solution, and the way individuals are added
to the global solution is simpler with wave (a simple sum of
selected individuals against a geometric semantic crossover
with a random r factor).

Another alternative to randomly combining individuals in
semantic GP is ESAGP (Error Space Alignment GP) [23]
which optimally combines individuals with an aligned error
vector or, groups three individuals with co-planar error vec-
tors (error vectors existing on the same bi-dimensional plane
which intersects the origin of the error space). Another re-
cent relevant approach is Multiple Regression Genetic Pro-
gramming that combines a program’s sub-expressions via
multiple linear regression (MLR) [2] and claims this ap-
proach crucial to improving upon the results produced by
MLR alone.

2The r factor is set randomly at the end of each iteration.
3The sharp rise of performance curves of GP in the early
generations motivated this choice.

Each of these systems significantly modifies GP, so incor-
porating them into an existing system is not a trivial task.
Even SSR, which needs the fewest changes, still requires the
ability to perform geometric semantic crossover. Wave, on
the other hand, only minimally changes the existing GP im-
plementations, and yet significantly reduces the cost (short,
non-bloating runs) and the complexity of the evolved solu-
tions. Often superior quality also results. Next, we detail
this system.

4. EXPERIMENTS
Table 1 lists the configuration parameters that we consis-

tently use across all the experiments, except where stated
otherwise.

Table 1: GP Parameters.

Parameter Value

Replacement Strategy Generational
Operator Probabilities Xover: 0.9; Point mutation: 0.1
Tournament Size 10a

Max. depth 17
Max. size 100

Functions set +,−,×,÷b

Terminal set Inputs and constants -1.0, -0.5,
0.0, 0.5 & 1.0

Fitness RMSE
Initialisation Ramped half & half
Max. initial depth 8

a A relatively high tournament size but recently successfully
used in [9] and [3].
b Secured division.

4.1 Problem Suite
For this study we have used three multi-dimensional data-

sets from the UCI Machine learning repository [4] and two
mathematical functions. Those from the UCI: Concrete
Strength where the objective is to predict the compressive
strength of concrete and data-set includes 1030 instances
each having 8 inputs; Yacht where the objective is to predict
the hydrodynamic performances of a yacht, and data-set
includes 308 instances each with 7 inputs; and Powerplant
where the task is to predict the net hourly electrical energy
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output of a power plant and data-set includes 9568 instances
and 4 inputs.

The two mathematical functions are: Poly-10 [21] y =
x1 ∗ x2 + x3 ∗ x4 + x5 ∗ x6 + x1 ∗ x7 ∗ x9 + x3 ∗ x6 ∗ x10
and Div-5 [24] y = 10

5+
∑5

i=1(xi−3)2
. For each function, we

randomly generate 500 data points in the range [0; 1] and
for each wave we randomly split the given data-set into two
subsets of equal size for training and testing purposes.

4.2 Benchmarks
The benchmarks we have chosen to compare Wave with

include both EC based and non-EC based machine learn-
ing methods. The EC based methods are standard GP,
both with and without linear scaling, with a population size
of 500; each run spans 100 generations. The non-EC method
is multiple linear regression (MLR), an efficient method to
solve regression problems which, in an award winning recent
effort, has been put forward as a tough benchmark for GP[2].
For all experiments we split the data randomly into equal
partitions for training and testing purposes. At each gener-
ation, each individual’s fitness is computed both on testing
and training dataset. Selection, of course, is conducted us-
ing only training fitness. For clarity and space restrictions.
we do not report completely homogeneous runs as in SSR;
exploratory experiments with consistently long periods (100
or 50 generations) reported much larger individuals than
with flexible periods over much smaller number of genera-
tions. However, the experiments which consistently either
use or do not use linear scaling are an approximation of the
homogeneous runs, and also present tougher benchmarks.

4.3 Naming Conventions
The naming convention we adopt for Wave GP set-ups

has the following format:
Wave : PeriodsNumber : Setting − P : PopulationSize

where PeriodsNumber is the number of periods in each
wave, P : PopulationSize is the population size of the
first period of the wave (e.g. P : 500 is a population of
500 individuals) and Setting indicates whether linear scal-
ing was used (LS) or not (NS). However, LS : NS−P indi-
cates alternating between scaled and normal periods. Simi-
larly, standard GP settings follow a similar pattern, that is,
GP : Setting − P : PopulationSize.

Table 2: Different Wave and GP configurations.

Method LS a Popb Gen c G. Incd P. Inc e Periodf

GP:LS-P:500 On 500 100 NA NA NA
GP:Norm-P:500 Off 500 100 NA NA NA
Wave:25:LS-P:100 On 100 10 1 18 25
Wave:25:NS-P:100 Off 100 10 1 18 25
Wave:200:LS-P:25 On 25 5 0 0 200
Wave:25:LS-P:500 On 500 10 0 0 25
Wave:25:NS-P:500 Off 500 10 0 0 25
Wave:25:LS:NS-P:500 Altg 500 10 1 18 25

a Linear Scaling (LS)
b Initial population size
c Initial minimum number of generations
d Number added to current minimum number of generations after a Period
failed to improve training fitness
e Number added to current population size after a Period failed to improve
f Number of consecutive Periods
g Alternation between LS and non LS, Gen 1 with LS. training fitness

5. RESULTS AND DISCUSSION
Because of phenomena such as over-fitting, the best test

fitness is not necessarily reached either at the last period of a
wave or at the last generation of an GP run. Therefore not-
ing only the end of run results can be unlucky for any setup,
and may require tailoring the end of runs to each setup. To
avoid that and to make a fair comparison between GP and
Wave, we measure the various run statistics at the end of
each period for Wave experiments and every ten generations
for GP; we call those reporting times moments. Measures at
a particular moment include items such as the curent gener-
ation or the current period, the training fitness, the testing
fitness, the number of nodes processed, amongst others.

In this study, at every moment, we report median val-
ues for training and test fitness as the median is a robust
measure of central tendency and represents data more mean-
ingfully [10]. We also present the best moment (in terms of
testing fitness) for each configuration and the total number
of nodes, which is the sum of the tree sizes of all evaluated
trees until the moment reported and is expressed in nodes,
1010 nodes. By presenting the best moment, instead of a
consistent, pre-determined fixed moment (or the last gen-
eration for GP), we avoid reporting at an unlucky point in
time. We can however, see whether such a moment comes
very early without evolving much or at a reasonably later
point which tests whether the algorithm in question can bat-
tle over-fitting.

For each data-set, except powerplant, the reported results
for Wave and GP experiments are median value on 100 runs
(or waves) of each. However, for the powerplant data-set, we
report results only for 30 runs at each configuration4. We
also run MLR 100 times5.

Due to the heterogeneity of the settings investigated, it
can be difficult to compare them in a fair manner on test-
ing fitness alone, as we cannot expect a wave with a small
fixed population to do better than one with a large dynamic
population. However, the smaller waves may nevertheless
be useful if they can achieve acceptable testing fitness with
a modest computational cost. To look into the trade off
between efficiency and computational cost of the respective
systems, Figure 4 plots the testing fitness against the num-
ber of nodes processed since the beginning of a run at each
moment.

5.1 The speed/accuracy trade off
Usually testing fitness is the key criterion to compare

the performance of machine learning algorithms; however,
with a deluge of data (or big data), training efficiency also
becomes important, particularly when initial training runs
are conducted to estimate the distribution of the data or
salience/relationships/dependencies within the data.

In cases such as these, it is more important to have Fast
Learners that have a reasonable approximation to the solu-
tion, as they will keep the response time low. Thus, training
speed of the cheapest Wave setup (Figure 4f), Wave:200:LS-
P:25, is important for future applications.

In tables 3-7 we report the best median training and test-
ing fitness among all moments for each setting on each data-
set. Lowest testing fitness among Wave settings and among

4This is due to a high number of data points resulting in
substantial computational cost.
5MLR method is deterministic but we use random training
and testing data sets so result may vary between runs.
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(a) Concrete (b) Yacht Testing/Nodes (c) Powerplant Testing/Nodes

(d) Div-5 Testing/Nodes (e) Poly-10 Testing/Nodes (f) Poly-10 Training/Nodes

Figure 4: Fitness / number of nodes is evaluated for each moment. The fitness is computed on the testing data-set for
Figure 4a to 4e and on the testing data-set for Figure 4f.

GP settings are in bold. Additionally, we report the Trade
Off Wave which, at some moment, produced the best test
fitness while consuming fewer nodes than the best GP mo-
ment. If the Trade Off Wave also has better test fitness than
the best result with GP, clearly it is better both in terms of
solution quality and expense.

We also note the Fastest Good Wave; this is a Wave set
up which outperforms the best GP moment on test fitness
and consumes fewer nodes than any other Wave.

Finally, we also report results from the MLR benchmark.
Of course, in this case we can not compare the nodes used,
neither can we record moments.

To test the statistical significance of reported differences
in performance, we use the Mann-Whitney U test at p =
0.05.

5.2 Discussion
The results clearly show that, except on Yacht (insignif-

icant difference), Wave with a population size of 500 with
alternating linear scaling performs the best among all the
configurations investigated. Those results are statistically
significant. This is rather surprising because one would ex-
pect linear scaling to be more effective if used consistently.
While the best moment for the best Wave set-up consumed a
higher node requirement than GP, Figures 4 shows that this
setup is the best even after consuming a similar number of
nodes. Also, a higher node count for the best Wave moment
than that with GP shows that the extra computation with
Wave is not promoting over-fitting, which shows an implicit
bias in Wave towards regularisation.

Also notice that while the best moment of the best Wave
set-up is computationally more expensive than that with
GP, the Trade Off Wave and the Fastest Good Wave are by
definition considerably cheaper for almost all of the problems
tackled.

Although the cheapest Wave set-up, Wave:200:LS-P:25, is
not among the best performers, Tables 5 and 6 demonstrate
that it performs quite reasonably on some data-sets, despite
a very small population size of only 25. This configuration
can produce better solutions on out of sample data than GP,
but even when it does not, the performance is not drastically
worse, showing that it can operate reasonably with limited
computational resources.

While figures 4 depict the good performance of Wave with
a population size 500 in terms of test fitness, we see also
that Wave with a population size of 100 achieves very good
results with considerably fewer node evaluations. Therefore,
the latter configuration may prove to be a good choice if
computational resources are scarce. We also note that if
for a particular data-set GP with LS does better than GP
without LS, Wave with LS produces even better results.

Results indicate that Wave is an efficient method. The
best wave moment is significantly better than the best GP
moment on four of the five data-sets studied, and the im-
provement on testing fitness is substantial. Also as shown in
table 8 the average tree sizes at the End of a Wave are usu-
ally significantly lower with Wave than with GP; note that
we limit the number of nodes to 100 for GP which allows it
generate surprisingly small individuals than with a typical
limiting factors such as a depth limit of 17.
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Table 3: Experimental results on Yacht dataset.

Method Moment Train Test Nodes

GP:LS-P:500 71g 5.16411 6.21251 2468k
GP:NS-P:500 81g 4.09004 4.48998 3410k
Wave:25:LS-P:100 23p 7.42025 7.87332 2056k
Wave:25:NS-P:100 22p 4.01469 5.41762 999k
Wave:200:LS-P:25 200p 9.02013 9.30088 450k
Wave:25:LS-P:500 25p 6.48936 7.08987 3229k
Wave:25:NS-P:500 9p 3.38198 4.73403 2464k
Wave:25:LS:NS-P:500 16p 3.35759 4.50582 4342k
MLR NA 8.86019 9.11015 NA

Trade Off Wave :
Wave:25:LS-P:500 9p 3.38198 4.73403 2464k

Fastest Good Wave :
NA

Table 4: Experimental results on Concrete dataset.

Method Moment Train Test Nodes

GP:LS-P:500 51g 14.1436 16.1199 671k
GP:NS-P:500 81g 14.6654 14.8268 3080k
Wave:25:LS-P:100 25p 14.3886 14.5569 3139k
Wave:25:NS-P:100 25p 10.3821 11.3939 970k
Wave:200:LS-P:25 12p 16.2683 16.3699 402k
Wave:25:LS-P:500 21p 13.8497 13.9208 1753k
Wave:25:NS-P:500 14p 8.72476 10.1065 4418k
Wave:25:LS:NS-P:500 24p 7.71554 8.98308 7463k
MLR NA 10.3123 10.5693 NA

Trade Off Wave :
Wave:25:LS:Norm;p:500 13 p 9.08195 9.69879 2950k

Fastest Good Wave :
Wave:25:LS;p:500 2 p 14.4465 14.5430 133k

The Fastest Good Wave results show that Wave not only
achieves significantly better training fitness, but also pro-
duces at least equivalent testing fitness in four of the five
data-sets, with significantly fewer node evaluations. For
each dataset at least one moment of a wave reaches equal
or statistically better testing fitness than the Best Standard
GP moment, at a fraction of cost, even if the final combined
program can reach huge sizes.

The best wave moment is also significantly better than
MLR on four data-sets, and the difference in the remaining
Powerplant dataset is not statistically significant.

In terms of training fitness, Wave with a larger population
always reaches significantly better fitness than either GP or
MLR. However, there is some evidence of over-fitting with
this set-up, as can be seen in Figure 4f.

The setting which emerges as the most efficient is that
which alternates between use and non-use of linear scal-
ing (Wave:25:LS:NS-P:500). This outperforms the chosen
benchmarks on four out of the five data-sets, and among
Wave setups, is only outperformed by Wave:25:LS-P:500 on
the poly-10 problem.

The heterogenity within the wave proves particularly use-
ful because, rather surprisingly, linear scaling does not al-
ways produce the best results, even when employed with
GP. A mixed approach using the Wave paradigm appears to
be a more flexible strategy that produces consistently good
results.

The Powerplant dataset is particularly interesting because
both GP:LS and GP:Norm seem inefficient on this data.
GP:LS does not seem to evolve at all and while evolution
is apparent with GP:Norm, it is very slow. However, the
combination of these two configurations in Wave:25:LS:NS-

Table 5: Experimental results on Powerplant dataset.

Method Moment Train Test Nodes

GP:LS-P:500 1g 17.0788 17.1299 11k
GP:NS-P:500 91g 37.8269 37.2500 3775k
Wave:25:LS-P:100 2p 17.0738 17.0571 23k
Wave:25:NS-P:100 25p 18.8342 19.5098 1077k
Wave:200:LS-P:25 181p 17.0157 17.1246 403k
Wave:25:LS-P:500 2p 17.1188 17.0372 99k
Wave:25:NS-P:500 25p 10.7321 11.3897 7530k
Wave:25:LS:NS-P:500 24p 4.86973 5.15350 8480k
MLR NA 5.12806 5.13028 NA

Trade Off Wave :
Wave:200:LS;p:500 3 p 17.0561 17.0781 6k

Fastest Good Wave :
Wave:200:LS;p:500 3 p 17.0625 17.0779 6k

Table 6: Experimental results on Div-5 dataset.

Method Moment Train Test Nodes

GP:LS-P:500 71g 0.02377 0.02395 2234k
GP:NS-P:500 81g 0.05738 0.05897 2731k
Wave:25:LS-P:100 7p 0.00698 0.00999 258k
Wave:25:NS-P:100 25p 0.10738 0.11704 3267k
Wave:200:LS-P:25 6p 0.02829 0.03099 15k
Wave:25:LS-P:500 6p 0.00442 0.00484 1050k
Wave:25:NS-P:500 23p 0.07700 0.08441 2143k
Wave:25:LS:NS-P:500 9p 0.00424 0.00480 1508k
MLR NA 0.71604 0.71736 NA

Trade Off Wave :
Wave:25:LS:Norm;p:500 10 p 0.00424 0.00480 1636k

Fastest Good Wave :
Wave:25:LS;p:100 3 p 0.01808 0.02098 78k

P:500 reaches good fitness in its early periods while also
maintaining its ability to evolve as seen on Fig 4c.

6. CONCLUSIONS
In this paper, we present a novel approach to GP which

we call Wave, where we use a small number of generations
in each wave, compute the residual and delegate the out-
standing improvement required to further runs. In this way
we systematically leverage the inherent behaviour of GP by
which rapid improvement typically occurs in early genera-
tions and we avoid the code growth associated with pro-
longed evolution.

The results of this preliminary investigation are very en-
couraging, demonstrating that Wave is a promising paradigm
in the search for improved performance and scalability in
GP. The Wave approach is extremely flexible, and we an-
ticipate many possibilities for further study. For example,
Wave could be totally or partially composed of periods using
other EC methods such as Interleaved sampling. Another
approach would be to vary evolutionary parameters such as
function set or genetic operator types and/or probabilities
during a Wave.

In fact, the Wave paradigm is so flexible that it does not
necessarily need to be limited to EC and could, for example,
be combined with MLR or other optimization methods.

There are, of course, some minor caveats, the most sig-
nificant of which is that as the initial best sub-expression is
systematically selected it is possible that if this first wave
is not a good one we risk polluting the remaining periods.
Informal experiments with alternating LS and normal GP
tended to confirm this idea. Further work should address
this potential issue.
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Table 7: Experimental results on Poly-10 dataset.

Method Moment Train Test Nodes

GP:LS-P:500 1g 0.47447 0.47591 11k
GP:NS-P:500 71g 0.37882 0.38868 383k
Wave:25:LS-P:100 7p 0.35781 0.45138 32k
Wave:25:NS-P:100 25p 0.20110 0.24104 2653k
Wave:200:LS-P:25 9p 0.20627 0.24712 220k
Wave:25:LS-P:500 6p 0.16587 0.18736 1097k
Wave:25:NS-P:500 24p 0.17971 0.22286 2824k
Wave:25:LS:NS-P:500 10p 0.16333 0.19930 1777k
MLR NA 0.76773 0.77197 NA

Trade Off Wave :
Wave:25:LS;p:100 7 p 0.20627 0.24712 220k

Fastest Good Wave :
Wave:25:Norm;p:100 3 p 0.35231 0.37657 51k

Table 8: Average size of individuals at the end of each period or GP
run.

Settings Yacht Conc P-10 Div-5 PowP

GP:LS-p:500 93.0 20.1 32.6 84.3 2.0
Wave:25:LS-p:100 11.0 2.0 2.0 40.9 2.8
Wave:25:NS-p:100 32.8 14.2 5.0 26.6 13.4

GP:NS-p:500 92.3 99.9 5.0 8.0 97.1
Wave:200:LS-p:25 14.2 2.4 2.4 2.0 2.2
Wave:25:LS-p:500 27.6 87.3 4.6 65.8 2.1
Wave:25:NS-p:500 47.3 36.2 30.9 10.2 33.8

Wave:25:LS:NS-p:500 21.3 8.0 14.9 34.0 2.0

In this initial study, we have focused on applying Wave
to symbolic regression problems. It would be interesting to
investigate how the Wave approach could be applied to other
learning tasks such as classification.
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