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ABSTRACT
Physical activity is recognized as one of the key factors for a
healthy life due to its beneficial effects. The range of physi-
cal activities is very broad, and not all of them require the
same effort to be performed nor have the same effects on
health. For this reason, automatically recognizing the phys-
ical activity performed by a user (or patient) turns out to
be an interesting research field, mainly because of two rea-
sons: (1) it increases personal awareness about the activity
being performed and its consequences on health, allowing
to receive proper credit (e.g. social recognition) for the ef-
fort; and (2) it allows doctors to perform continuous remote
patient monitoring.

This paper proposes a new approach for improving activ-
ity recognition by describing an activity recognition chain
(ARC) that is optimized by means of genetic algorithms.
This optimization process determines the most suitable and
informative set of features that turns out into higher recog-
nition accuracy while reducing the total number of sensors
required to track the user activity. These improvements can
be translated into lower costs in hardware and less intrusive
devices for the patients. In this work, for the assessment
of the proposed approach versus other techniques and for
replication purposes, a publicly available dataset on physi-
cal activity (PAMAP2) has been used.

Experiments are designed and conducted to evaluate the
proposed ARC by using leave-one-subject-out cross valida-
tion and results are encouraging, reaching an average clas-
sification accuracy of about 94%.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—concept learn-
ing ; I.2.8 [Artificial Intelligence]: Problem Solving, Con-
trol Methods, and Search—heuristic methods; J.3 [Life and
Medical Sciences]: Health
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1. INTRODUCTION
The positive effects of physical activity in health have been

extensively explored throughout the medical literature. Re-
cent studies have explored the benefits of physical activity
in healthy ageing and the reduction of risk factors of chronic
diseases [15], its benefits in school-aged children and youth
[28], the association between the lack of physical activity in
teenagers and mental illnesses [8], the correlation between
the lack of exercise and the risk of developing alcohol use
disorders [18], the benefits of sport practice in adolescent
wellbeing [31] and even the relation between physical activ-
ity with the prevention of certain types of cancer [44, 54,
27], while in the last cases not conclusive results have been
found. Other disorders associated to the lack of physical
activity have also been thoroughly reviewed [30].

Interestingly, in the case of study of physical activity and
prevention of prostate cancer cited above [27], authors re-
ported “inconsistencies due to misclassification of physical
activity”, thus revealing research interest in the development
of accurate systems for correctly classifying physical activ-
ity performed by the population. It should be noted that
not all kinds of physical activity have the same effects on
physiology and health. A distinction between different ac-
tivities could be established, for instance, by the group of
muscles activated by performing each of these activities. An-
other classification of physical activity could be determined
by their metabolic equivalent (MET) or energy required to
perform an activity, while the adequacy of this metric has
been put into question [11].

Previous studies had shown that awareness about the ben-
efits of physical activity and its relevance to the risk of
heart disease was disappointing [24]. Since then, other stud-
ies have examined the interventions carried out around the
world to promote and increase physical activity [26], as well
as the correlates of physical activity [25, 7, 22, 20], show-
ing increasing interest in understanding why some people is
more active than other as well as effort to create awareness
about the benefits of physical activity.

In any case, there is a clear interest of recognizing the
activity that a subject is performing, not only because of
medical reasons, but also in order to provide self-awareness
of the activity level and to be able to potentially give the
subject proper credit for his/her effort, being both key re-
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quirements for developing technologies promoting physical
activity [17].

Activity recognition is a relatively new field with increas-
ing interest given the availability of commodity hardware
(i.e. smartphones, wearable devices, etc.) which are each
day owned by more people and contains a set of sensors
(accelerometers, gyroscopes, GPS, etc.) able to provide the
basic information required to perform activity recognition.

A proof of the increasing interest in activity monitoring
can be found in the appearance of an important number
of inventions and patents in the recent years which aim at
monitoring and quantifying physical activity of final users
[52, 56] and more recently also at recognizing the activity
being performed by the user [29] providing in some cases
features of customized personal training [32, 53]. In addi-
tion, related health care cell phone apps also gain popularity
in the last years and the main manufacturers included spe-
cific hardware into the cell phones for sensoring (e.g. Bosch
BMA280 accelerometer or the InvenSense’s six-axis MPU-
6700). The beneficial effects of activity monitor-based coun-
seling on physical activity and health have been recently
explored by Vaes et al. [51].

This paper proposes an approach for performing super-
vised learning of a classification model able to predict the
activity of a new user in real-time. To improve the results
feature selection will be carried out by means of genetic al-
gorithms, a widely used technique [42]. A tradeoff between
classification accuracy and the number of required sensors is
achieved trying to increase the classification accuracy while
reducing as much as possible the number of sensors.

This paper is structured as follows: section 2 discusses
the state of the art in the field of activity recognition and
presents some of the related work, section 3 describes the
methodology followed for the development of this work, thor-
oughly describing each step in the activity recognition chain.
Experimental setup and results are later discussed in section
4 and finally conclusive remarks are future lines of work are
provided in section 5.

2. ACTIVITY RECOGNITION SYSTEMS
As discussed before, activity recognition is a field broadly

explored in recent research works. The ubiquity of sensors
has eased the task of researchers to acquire data from phys-
ical activity, in most cases from accelerometers and gyro-
scopes located within cell phones.

Recently, Bulling et al. [10] have examined the differ-
ent characteristics of human activity recognition systems
(which is a more general concept than that of physical ac-
tivity recognition systems) according to different criteria:

• According to its execution mode, the system can work
either in an offline (the sensors data is available before-
hand, and the activity recognition is performed once
all the signals have been logged) or online (the sensors
data is processed in real time) manner.

• According to its generalization ability, the system can
either be user independent or user specific.

• According to the type of recognition, the system can
either process continuous data (by identifying each ac-
tivity or gesture within the stream of signals data) or
isolated data (where the beginning and the end of the
activity are defined beforehand).

• According to the type of the activities to be recognized,
they can be periodic, sporadic or static. In most cases,
physical activity is periodic.

• According to the system model, it can be either state-
less (if the system only considers the sensors signals)
or stateful (if the system considers also a model of the
environment).

The physical activity recognition system aimed at this pa-
per is trained offline with previously gathered data (while it
can be used online in order to recognize physical activity
performed by users in real time), is intended to be user-
independent, it processes segmented data, where this seg-
mentation proccess is part of the activity recognition chain,
is aimed at detecting periodic activities (as it is often the
case of physical activities, in contrast to sporadic gestures)
and is stateless, as only data provided by sensors placed in
the human body is considered.

Additionally, recent works often differentiate between data
obtained from ad-hoc body sensors and from smartphones.
The latter case is specially interesting because of the ubiq-
uity of smartphone devices and because it enables perform-
ing activity recognition using non-intrusive technologies for
the user, while on the other hand this approach tends to
be less accurate because sensors (the smartphone itself) is
not always wore in the same location and is not pointing
always to the same direction [58]. Works focusing on activ-
ity recognition in smartphones have proliferated during the
recent years. Some works focus on discussing the classifi-
cation algorithms which can be used for this task [9, 48],
or the most suitable feature sets for the classification task
[34] while others look for specific techniques in order to re-
duce computational cost and energy expenditure [5, 47], a
key issue when using smartphones as battery life is often
affected when sensors are used and computing is performed.
In some cases, public datasets have been released, as in the
work from Anguita et al. [6], where a baseline benchmark
using support vector machines (SVM) is also provided. A
recent survey of the state-of-the-art in online physical ac-
tivity recognition using smartphones has been addressed by
Shoaib et al. [46].

On the other hand, this paper focuses in physical activ-
ity recognition using body-worn sensors, an approach which
has also been extensively reviewed in the literature. Many
works have focused on proposing techniques for the task
of activity recognition, including fuzzy finite automata [1],
ensemble methods combining support vector machines, arti-
ficial neural networks, and 1-nearest neighbors [57] or com-
bining C4.5, multilayer perceptron and logistic regression
[12], Hough transformation along with random projection
trees [55], online multitask learning [49] or Naive Bayes and
k-nearest neighbors [23]. A review of the topic’s literature
from the years 2011 and 2012 along with a proposal using
C4.5 and AdaBoost is provided by Ugulino et al. [50], while
this work was published before the PAMAP2 dataset used
in this work was released.

In other cases, context-aware recognition systems are used
in order to include information about the environment and
complement the data extracted from sensors. This is the
case of recent works, such as the ones from Gu et al. [21]
and Alvarez et al. [4] where activity recognition is assisted
using WiFi signals.

Activity recognition is often used for specific applications,

1312



im

Figure 1: Steps involved in the activity recognition chain (ARC), from data acquisition to classification.

as in the case of Seiter et al. [45] where these techniques
are used with stroke rehabilitation patients, the works from
Altini et al. [3] or Chen et al. [13] where activity recognition
and clustering is used to estimate energy expenditure, or
the work from Alshurafa et al. [2] where games are used to
reward physical activity.

As acquiring data from body-worn sensors is an expensive
task, some works have proposed their own datasets. It is
the case of the work from Reiss and Stricker [38] where the
PAMAP2 dataset used for this work is introduced and a
first benchmark using standard machine learning techniques
is provided.

Finally, the application of genetic and evolutionary al-
gorithms to the field of activity recognition has not been
extensively explored, while there are some works which are
relevant to the topic. These works involve in most cases the
use of genetic algorithms for fusion weight selection of classi-
fiers within ensembles, such as in the works of Fatima et al.
[19] and Chernbumroong et al. [14], while these works do
not focus specifically in physical activity, but rather activity
recognition within homes. Also, genetic algorithms are also
used for feature selection, as described in the works from
Cilla et al. [16] and Saputri et al. [43].

3. METHODOLOGY
Works on human activity recognition usually follow a com-

mon sequence of steps, namely an activity recognition chain
(ARC) [10], a general-purpose framework for obtaining data,
building and evaluating activity recognition systems. As
shown in figure 1, these steps involve data acquisition from
sensors, signal preprocessing, signal segmentation, feature
extraction and finally training of a classifier. This section
describes each of these steps of the ARC.

3.1 Data Acquisition
The first step of the ARC involves acquiring physical ac-

tivity data. This process usually involves the setting of a
protocol for a set of subjects to perform a sequence of estab-
lished activities while wearing certain sensors (or carrying
their smartphones or other devices). Nevertheless, for this
paper the PAMAP2 Physical Activity Monitoring dataset is
used [41, 36, 38, 37, 40, 39, 35], which is publicly available
at UCI Machine Learning Repository.

This dataset contains labeled information about physical
activity for nine subjects wearing a heart rate unit and three
Colibri wireless Inertial Measurement Units (IMUs) located

over the wrist of the dominant arm, on the chest and on
the dominant side’s ankle respectively while performing the
next set of activities:

• lying: lying quietly while doing nothing, small move-
ments - e.g. changing the lying posture - are allowed.

• sitting: sitting in a chair in whatever posture the sub-
ject feels comfortable, changing sitting postures is al-
lowed.

• standing: consists of standing still or standing still
and talking, possibly gesticulating.

• ironing: ironing 1-2 shirts or t-shirts.

• vacuuming: vacuum cleaning one or two office rooms
(which includes moving objects, e.g. chairs, placed on
the floor).

• ascending stairs: was performed in a building be-
tween the ground and the top floors, a distance of five
floors had to be covered going upstairs.

• descending stairs: was performed in a building be-
tween the ground and the top floors, a distance of five
floors had to be covered going downstairs.

• normal walk: walking outside with moderate to brisk
pace with a speed of 4-6 km/h, according to what was
suitable for the subject.

• nordic walk: walking performed outside on asphaltic
terrain, using asphalt pads on the walking poles (it has
to be noted that none of the subjects was very familiar
with this Nordic sport activity).

• cycling: was performed outside with a real bike with
slow to moderate pace, as if the subject would bike to
work or bike for pleasure (but not as a sport activity).

• running: jogging outside with a suitable speed for the
individual subjects.

• rope jumping: the subjects used the technique most
suitable for them, which mainly consisted of the basic
jump (where both feet jump at the same time over the
rope) or the alternate foot jump (where alternate feet
are used to jump off the ground).
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Table 1: PAMAP2 attributes extracted from IMUs
1 temperature (◦C)
2-4 3D-acceleration data (ms−2), scale: ±16g, reso-

lution: 13-bit
5-7 3D-acceleration data (ms−2), scale: ±6g, resolu-

tion: 13-bit
8-10 3D-gyroscope data (rad/s)
11-13 3D-magnetometer data (μT)
14-17 orientation (invalid data)

These activities are performed by all subjects under a
fixed protocol [41], which consists in the execution of the
previous activities in an established order, with all subjects
spending the same time in the same exercise.

In total, 9 subjects (8 males and 1 female) take part in the
data acquisition step, aged 27.22 ± 3.31 years and having
a BMI of 25.11 ± 2.62 kgm−2, one being left-handed and
the remaining being right-handed [36]. Some subjects may
show a slight deviation with this protocol due to problems
with the hardware setup such as connections losses or system
crashes, which mostly causes differences in the timing of the
activities or leads to unavailability or loss of information for
some activities. However, subject 9 is an extreme case as his
data completely differs from the specified protocol, and thus
he is ignored for the experiments carried out in this paper.

The IMUs worn by the subjects generate a total of 51
attributes, as individual IMUs provide 17 attributes each,
as shown in table 1. Besides, each instance also contains a
timestamp (in seconds) and the heart rate (in bpm), so the
total number of attributes is 53 plus the activity, which is
the class.

The IMUs have a sampling frequency of 100Hz, so one ac-
tivity second provides 100 instances for the dataset. Mean-
while, the heart rate monitor has a sampling frequency of
9Hz, and as a result heart rate information is not available
in about 91% of the dataset instances.

3.2 Signal Preprocessing
Signal’s preprocessing step is very relevant because the

signal samples recovered typically contain noise and other
features that are worth being taken into consideration. This
phase will receive the original samples as an input and will
return a new sequence of samples. For this dataset, the next
actions will take part of the preprocessing phase:

• Removing the timestamp, as it is an identifier which
would add bias to the classifier (actually, knowing the
time at which an activity was carried out is probably
enough to accurately predict the activity itself, as all
subjects follow a fixed protocol).

• Removing the information of orientation (a total of 12
attributes of the dataset, 4 attributes per IMU) as the
authors state that these attributes are invalid, or not
relevant, for this data collection [33].

• Completing the missing values (available in the origi-
nal samples as NaN values) by estimating their real val-
ues. In all cases, this data is computed as the same as
the previous available value. This is considered a good
approximation as values are not expected to change
significantly within one hundredth of a second, and
for all attributes except the heart rate the number of

missing values is very small (and only happens due to
communication failures). In the case of the heart rate,
there are more missing values because of the lowest
sampling frequency, but again it has been considered
that the heart rate will not change significantly within
one tenth of a second.

• Removing instances labeled as transition, as they do
not correspond to any activity, but the time after one
activity ends and before the next starts.

After the preprocessing stage, the dataset dimensionality
is reduced to 40 features plus the activity.

3.3 Signal Segmentation
The raw data is in the time domain, i.e., each instance rep-

resents the signals provided by the sensor in a given point
in time. While this format is suitable for training a model,
it is expected that higher accuracy can be achieved in the
classification if instances themselves capture temporal infor-
mation. To do so, in the segmentation phase the signals will
be converted into the frequency domain, for which a Discrete
Fourier Transform (DFT) will be applied over the dataset.

For this process, a sliding window of size 512 (correspond-
ing to 5.12 seconds of data) is defined, and for each of these
windows the Fast Fourier Transform (FFT) is computed1.
This computation will return for each signal its transform
in the frequency domain, composed of 512 different values.

The window of samples, for which the FFT is computed,
is moved once at a time, and only instances belonging to the
same class are considered for the same window (i.e., a win-
dow will never contain instances belonging to two different
physical activities).

3.4 Feature Extraction
Once each signal is transformed into the frequency do-

main, the resulting signal must be processed in order to
extract features to compose the new dataset. In this case,
each window will generate a new instance in the dataset.

To extract the new features, a statistical summary of the
512 values generated after computing the DFT will be cal-
culated, leading to the generation of 7 attributes for each
signal: the mean, the median, the standard deviation, the
maximum value, the minimum value, the 25% percentile and
the 75% percentile. As a result, each instance in the original
dataset is replaced by a new new one containing 280 features
plus the activity.

As it can be seen, the dataset dimensionality has signifi-
cantly increased in size, by a factor of 7. This high dimen-
sionality will lead to higher training times and could poten-
tially affect the model accuracy negatively due to overfitting.
In order to reduce the number of features in the resulting
dataset, a genetic optimization approach will be used.

In particular, a local optimization of the feature set for
each user will be pursued which will later be used to obtain
an approximation of the best feature set for all the users. For
this local optimization, a binary chromosome of size 280 is
defined, where each gene represents a feature and whether it
is considered for training the model (1) or it is not (0). A ge-
netic algorithm is setup with a population of 50 individuals,

1It should be noted that a window with a size power of
two has been chosen in order to be able to use the FFT
algorithm, thus increasing computational performance.
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Table 2: Number of features for each value of τ
τ # of features τ # of features
1 280 5 94
2 264 6 35
3 233 7 7
4 166 8 0

a crossover rate of 35% (with random crossover point) and
a mutation rate of 1/12th (preliminary experimentation had
shown no significant difference in the results with alterna-
tive setups). The fitness function is defined as the accuracy
achieved by a Random Forest classifier in the test set.

While feature optimization is performed in a per-user ba-
sis, leading to the obtainment of 8 different chromosomes,
this paper looks for a set of features that is applicable to all
users. To achieve this set, a threshold τ is defined so that
an attribute ai is chosen only if at least τ out of eight bits
for the corresponding genes in all chromosomes are 1, i.e.:

ai =

{
1, if

∑
n={1..8} g

n
i ≥ τ

0, otherwise

where ai is the i-th attribute and gni is the i-th gene of the
best individual for the n-th fold.

Table 2 shows the number of resulting features once that
this process is applied for different values of the parameter
τ , excluding the class. It must be remarked than as the
value of τ grows, the resulting feature set is always a subset
of the set for smaller values of the threshold.

It can be realized that the feature set for τ = 1 contains
all the features, and also the value for τ = 8 is the empty
set (∅), which means that there is no attribute for which
the value for its corresponding gene is either 0 or 1 for all
chromosomes.

3.5 Classification
The problem of activity recognition belongs to the field

of supervised learning, where a model is to be trained us-
ing a set of instances from which the class (in this case the
activity) is known a priori.

For building the classification model, standard machine
learning techniques addressed in the literature are used. In a
first approach, before feature optimization takes place, both
Naive Bayes, C4.5 and Random Forest are used in order to
establish baseline results. As it will be seen in the next sec-
tion, Random Forest significantly outperforms Naive Bayes
and C4.5 for all users, so this technique is used for the rest of
the work (both the fitness computation and the evaluation
of the final models).

4. RESULTS
In order to evaluate the activity recognition system, a

leave-one-subject-out (LOSO) cross validation procedure is
used for the experiments, where 8 different experiments take
place, each one taking a different subject as the test set and
the remaining 7 subjects as the training set.

In the first place, several models are learnt and tested
with each user using the complete set of features (composed
of 280 attributes as described in the previous section). In
order to establish a baseline comparison, three different ma-
chine learning techniques are used: Naive Bayes, C4.5 and

Random Forest. Results are shown in table 3, where it can
be seen that Random Forest outperforms its competitors.

Once these baseline results are achieved, the next task
involves the optimization of the feature set using genetic
algorithms as described in section 3.4. As discussed before,
the feature set is individually optimized in a per-user basis,
i.e., a model is optimized for each fold in the LOSO cross
validation, leading to the results shown in table 4.

As it can be seen, the results are quite close to 100%. Nev-
ertheless, the main handicap of this approach is that the set
of selected features is different for each user. Therefore, it is
optimized for each different test subject and fails to provide
a fixed set of features for a user-independent classification
model, not accomplishing the objective of reducing the total
number of sensors.

To attain a subject-independent set of features, the pro-
cedure described in section 3.4 is carried out. The resulting
number of features for each value of τ was already discussed
in table 2. The results for each different value of τ (exclud-
ing τ = 0 and τ = 8) are shown in table 5. Each result for
each subject and value of τ is the average of 30 different ex-
ecutions, each one training the model with a random sample
of 10% of the training set.

It can be seen that results slightly increase for small val-
ues of τ . The optimum value is achieved when τ = 4, but
specially interesting is the case when τ = 5, because the
difference in the average accuracy is small and the number
of features is almost reduced by a factor of three from the
original set of features generated after computing the signal
segmentation and the first feature extraction process. Not
only the difference in accuracies is small, but running a two-
sample t-test for each subject with the significance level set
to α = 0.05 reveals that there is not statistical difference2

between the values of τ = 4 and τ = 5 for subjects 5, 6, 7
and 8 (i.e., the null hypothesis stating that samples for both
values of τ are random samples coming from normal distri-
butions with equal means and equal but unknown variances
fails to be rejected); and with the significance level set to
α = 0.01 the same happens for subject 2.

These results can be compared to those obtained in other
works performing activity classification over the PAMAP2
dataset. A benchmark is first provided by Reiss and Stricker
[38] when the dataset is introduced. In that work, it can be
seen that different classification tasks are evaluated and dif-
ferent experimentation setups are used. The ones that are
comparable to the results obtained in this paper are those
referring to the “all activity” recognition tasks using LOSO
cross validation. In their work, the highest accuracy is ob-
tained using k-nearest neighbors, getting a value of 89.24%,
more than five points below the best result obtained in this
work (94.64%). While other authors, such as Soria et al. [47]
have also used the PAMAP2 dataset for evaluating their
proposals, the accuracy is aggregated with other datasets,
making further comparison impossible.

Concluding, results show that the proposed activity recog-
nition system achieves a very high accuracy for all subjects,
using an unbiased LOSO cross-validation experimentation.
Also, optimization using a genetic algorithm allows reducing

2Using α = 0.05, homoscedasticity is not met using Levene’s
test for subject 4, and normality cannot be established using
Lilliefors test for subjects 3 (τ = 4), 5 (τ = 5) and 8 (τ = 4).
In these cases, a Wilcoxon rank sum test is used, resulting
in failing to reject the null hypothesis for subjects 5 and 8.
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Table 3: Classification accuracy for each fold using the whole feature set
Subj. 1 Subj. 2 Subj. 3 Subj. 4 Subj. 5 Subj. 6 Subj. 7 Subj. 8 Avg.

Naive Bayes 73.29% 65.79% 94.19% 96.66% 90.91% 88.33% 91.73% 89.50% 86.30%
C4.5 78.31% 80.48% 74.70% 84.39% 71.27% 89.59% 72.19% 82.85% 79,23%
Random Forest 85.82% 89.73% 92.83% 96.02% 92.83% 96.50% 97.35% 97.03% 93.51%

Table 4: Classification accuracy after optimizing the feature set for each fold
Subj. 1 Subj. 2 Subj. 3 Subj. 4 Subj. 5 Subj. 6 Subj. 7 Subj. 8 Avg.
97.91% 97.10% 99.16% 99.88% 98.42% 99.31% 99.66% 99.68% 98.89%

the total set of features from 280 to 94, and in consequence,
decreasing the total number of sensors wore by the subjects
and their costs.

5. CONCLUSIONS AND FUTUREWORK
This paper has explored the field of human activity recog-

nition. Experts consider physical activity as a key aspect for
human health, preventing numerous diseases and boosting
energy. Not all physical activities have the same effect on
health, as these effects may vary depending on the muscles
used for the activity, the energy cost required to complete
the activity, etc. For this reason, a system able to accu-
rately recognize the physical activity performed by a subject
sounds quite promising, both due to the fact that it may in-
crease awareness about the subject’s health and because it
would potentially be able to track this activity with medical
purposes (e.g. during specific treatment).

This paper has discussed the development of an activ-
ity recognition system by thoroughly describing its activity
recognition chain (ARC), which explains how the data is ob-
tained, preprocessed, segmented, how features are extracted
and finally how a classification model is trained. For this
paper, the PAMAP2 dataset has been used, which is pub-
licly available for download, thus easing replication. Basic
preprocessing is performed and the DFT is applied over a
sliding window of the data in order to convert the signals
from the time domain to the frequency domain. Then, fea-
tures are extracted by performing a statistical summary of
the signal computed by the DFT.

Once features are extracted, baseline results are obtained
by applying standard machine learning algorithms in order
to learn classification models, using leave-one-subject-out
(LOSO) cross validation for preventing biased results. An
average classification accuracy of 93.5% is achieved.

Finally, a genetic algorithm is used to optimize the feature
set. A local per-user approach is used for this optimization
obtaining accuracies up to 99% and even higher, and reach-
ing an uniform level of forecasting more suitable for every
individual. Later, all feature sets are aggregated by defin-
ing a threshold τ for all individuals, allowing to generate a
subject-independent classification model with still very high
levels of accuracy. This method reveals the relevant sensors
for the classification, reducing features and economizing the
sensors to wear without lacking on the activity detection.
This genetic-based optimization increases the accuracy up
to 94.6% but more interestingly, it is able to achieve accura-
cies of 94% with only 94 features, a third part of the original
set of 280 features.

Some improvements and further experiments could be per-
formed over this work, and are proposed here as future work.

For instance, the genetic algorithm could be used to select
sensors (the first step in the ARC) rather than features. This
would reduce the search space increasing the speed during
the GA execution, on the other hand leading to lower av-
erage accuracies. While the genetic algorithm presented in
this paper performs local optimization of the feature set for
each subject, it would be interesting to perform global op-
timization of the feature set for all subjects, while doing so
would increase the fitness computation significantly. Both
tasks could be performed simultaneously in order to achieve
a tradeoff between the attained accuracy and the optimiza-
tion time.
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