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ABSTRACT
Diabetes mellitus is a disease that affects to hundreds of million

of people worldwide. Maintaining a good control of the disease is
critical to avoid severe long-term complications. One of the main
problems that arise in the (semi) automatic control of diabetes, is to
get a model explaining how glycemia (glucose levels in blood) va-
ries with insulin, food intakes and other factors, fitting the charac-
teristics of each individual or patient. In this paper we compare ge-
netic programming techniques with a set of clsssical identification
techniques: classical simple exponential smoothing, Holt’s smoot-
hing (linear, exponential and damped), classical Holt and Winters
methods and auto regressive integrated moving average modelling.
We consider predictions horizons of 30, 60, 90 and 120 minutes.
Experimental results shows the difficulty of predicting glucose va-
lues for more than 60 minutes and the necessity of adapt GP tech-
niques for those dynamic enviroments.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Met-

hods, and Search—Heuristic methods; G.1.6 [Numerical Analy-
sis]: Optimization—Global optimization

Keywords
Genetic Programming, Modeling, Diabetes

1. INTRODUCTION
Diabetes Mellitus (DM) is a disease affecting more than 300 mi-

llions people in the world. Many factors influence the appearance
of Diabetes, but we can generalize saying that all patients suffer a
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defect in either the secretion or in the action of insulin, which is
essential for the control of blood glucose levels. The result is that
cells do not assimilate glucose and, as a consequence, there is a rise
in blood glucose levels (or hyperglycemia).

Roughly speaking we can find two main kinds of diabetes; Type
1 (T1DM) and Type 2 Diabetes (T2DM). In T1DM the pancrea-
tic cells do not produce insulin due to an autoinmune process. On
the other hand, a patient with T2DM suffers from insulin resistan-
ce since the cells that need the glucose fail to use it properly. In
all the patients mainting a good glycemic control is esentential to
avoid not only short term, but also long terms complications. One
of the most serious short term complication is a diabetic coma cau-
sed by a very low level of glycemia (or hypoglycaemia), which can
eventually devent on the death of the patient. Among the long term
problems we can mention blindness, renal failure, sores and infec-
tions in feet, damage to nerves in the body, etc.

The good new is that most of the patient with good control of
the levels of glycemia have a normal life and avoid (or at least de-
lay) the appearance of complications. However, this is not an easy
task. Maintaining an approapiate control of the glucose implies
measures of glucose in blood using a Continous Glucose Monito-
ring (CGM) system or/and Glucose Meters (GM). The patient also
needs to count or estimate the amount of carbohydrates is going
to eat and to have the knowledge for deciding the units of insulin
he/she will need in order to remain on good glucose levels after the
meals. This is the cause that a high percentage of diabetics (around
50 %) do not achieve a real control of their glucose levels. The ideal
solution would be an artificial pancreas (AP) and this is the main
area of research in the field.

To achieve a completely autonomous glycemic control, a control
algorithm (CA) receiving information from a CGM system would
be necessary. By forescating the evolution of blood glucose, using
a predictive model of the response system, the CA would indicate
to an insulin pump when to inject a bolus of insulin and the amount
necessary. This system is usually called an AP. One of the main pro-
blems for the development of the AP is the lack of accurate models
for predicting the future of the glucose. Although there are some
clasical approxiamtions there is still to much to do for predictions
within an horizon of more than 90 minutes.

Genetic Programming (GP) [1] has proven to be effective on ot-
her predicition problems. In particular Winkler et al. have applied
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symbolic regression based on GP using a structure identification
framework described in [2] and [3] in other identification problems.
In this paper we investigate if the mentioned methods could be suc-
cesful for glucose level predictions in humans. We will analyze GP
results and compare them with those obtained with a set of clas-
sical identification techniques. In particular we have implemented
classical Simple Exponential Smoothing (SES), three Holt’s smoot-
hing approaches (linear, exponential and damped), classical Holt
and Winters methods and auto regressive integrated moving avera-
ge (ARIMA) modelling. For a full explanation of all the classical
techniques that we have employed, we refer to [4].

Experimental Results shows that GP can sometimes outperforms
classical techniques for predictions on the horizon of 30 and 60 mu-
nites. Unfortunately, we can not say that we obtain good results for
90 and 120 minutes. Results show that it is very difficult to predict
glucose values for horizons of more than 60 minutes. We present
here some insight on this issue, by analyzing espectral properties
of the data of some simulated and real patients.

The rest of the paper is organized as follows. Section 2 reviews
some of the previous approaches on glucolse level prediction. Sec-
tion 3 explains the methodology applied in this paper, with the
description of the techniques, and patients characteristics of both
in-silico and real input data. Section 4 describes the experimental
setup, while 5 analyzes the experimental results. On Section 6 we
propose some future work and conclude the paper.

2. RELATED WORK
The problem of predicting and modelling glucose levels has been

an intensive area of research during the last 10 years. Two are the
main targets of these studies. Some of them tried to predict the
glucose levels with a time horizon of up to two hours, since this is
usually the time step needed by the patient to be confortable after
a meal. There are also some researchers that tried to identifiy 24
hours models. The utility of the last is different and is usually more
effective when programming an insulin pump or when establishing
an insulin profile for longer periods.

We can find in literature some approximations providing models
for the average case [5]. However, there are hardly few approaches
adapted to the particularities of each patient. Most of the models
in the literature apply classical modeling techniques, resulting in
linear equations defined profiles, or models with a limited set of
inputs [6]. One exception is [7], where Heusden et al. proposed the
use personalized information of the patient. The type of informa-
tion is not clearly described since is aomthing mentioned as easily
accesible by the specialist or the automatic system. The main pro-
blem with this approach is that it can not incorporate other impor-
tant factors such as exercise or stress that clearly affect glycemias
and it is only useful with linear models and.

Recently Hidalgo et al. proposed the application of evolutionary
computation techniques to obtain customized models of patients,
unlike most of previous approaches which obtain averaged models.
The proposal is based on a kind of genetic programming based on
grammars known as Grammatical Evolution (GE). The proposal
has been tested with in-silico patient data and results are clearly po-
sitive. Authors present also a study of four different grammars and
five objective functions[8].In the test phase the models characteri-
zed the glucose with a mean percentage average error of 13.69 %,
modeling well also both hyper and hypoglycemic situations. Ho-
wever the application of this technique for short time predictions is
still under research, since it will be necessary to adapt the grammars
for dynamic enviromments.

Other personalized control approaches were presented by the
main research groups on AP. Those are proposals following the

clinical practice. Treatment for subjects with T1DM uses rates of
basal insulin delivery, insulin to carbohydrate ratios and indivi-
dual correction factors, typically from observations of the specia-
list. However, those models are often inaccurate, since clinical data
in T1DM are not extensive enough to identify the exact models [9].

There are also some models used in artificial pancreas systems or
closed loop control models: artificial pancreas systems are closed
loop control systems trying to emulate the action of a pancreas [10]
They are based on the assumption that it is possible to reach a good
control with approximate models, provided that the model is related
to the control objective [11].The main risk is hypoglycemia as a
reaction to an excessive insulin administration, usually due to the
lack of accurate individualized models.

We can find also Autoregressive models (AR) [12], protocols to
improve the reliability of the models [10], and solutions by com-
mercial companies Those approaches were designed to facilitate
the control of diabetes but they work only with the glucometers of
the company.

Evolutionary computation has a high potential to incorporate to
the model factors which are difficult to quantify, in other words to
collect system dynamics, allowing to obtain individualized models
since they are able to provide a solution for each set of data on a
single patient.

3. METHODOLOGY
As we have already mentioned the aim of this paper is to test

the ability of GP for obtaining models and predictions of glucose
levels in humans. We will also try to check what happens with clas-
sical techniques when applied to the same problem instances. After
analyzing both options, we will be able to draw conclusions and
see how to deal with future work.

The methodology of the research is as follows: First, we try both,
the classic techniques and GP with data from in-silico patients in-
silico. We will work with data instances already studied in previous
articles [13]. For each of the techniques, and for each patient obtain
a model using as training data a 24 hour instance. Then, using this
model try to make predictions for values of the glucose after 30,
60, 90 and 120 minutes. For the predictions we will use another 24
hour data instance generated by the simulatir. With the analysis of
the results and data input will try to get some light on the difficulty
of predictions on time horizons longer than 60 minutes.

Hence, in this section we describe the process of obtaining mo-
dels and then we present a brief description of the different tech-
niques used in the paper. Details about data and simulator will be
given at Section 4.

3.1 Problem description
Figure 1 shows the process of optimization and modeling. Star-

ting from a set of historical data including glucose data and of ot-
her events of the patient, measured every 15 minutes for 24 hours,
a model of the data is obtained. From this mode,l and using anot-
her 24 hours dataset, the validation process for 30, 60, 90 and 120
minutes is performed.

Le us suppose that the patient is using two types of insulin, IS
(Short term insulin) and IL (Long term insulin). We have registered
the set of measures explained below. Given a set of measures

GL = {gl0, gl1, · · ·, gln}
of the glucose level of a patient, and knowing that gli was measured
at time ti. Given a set of intakes

CH = {ch0, ch1, · · ·, chn}
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Figure 1: Model generation and optimization.

of carbohydrates units of a patient, and knowing that chi was eaten
at time ti. Given a set of injections of insulin of type S

IS = {is0, is1, · · ·, isn}
and knowing that isi was injected at time ti. Given a set of injec-
tions of insulin of type L

IL = {il0, il1, · · ·, iln}
and knowing that ili was injected at time ti. The problem of mode-
ling the glucose blood level of a patient, in its simplified form, can
be formulated as follows: Find an expression of estimated glucose

values, denoted as ĜL

ĜL(k + 1) = f(ĜL,CH, IS, IL), 0 ≤ k ≤ N (1)

which minimizes the fitness function F , which tries to close the gap
between real and estimated glucose values:

F =

n∑
i=0

√
(GL(i)− ĜL(i))2 (2)

Where ĜL corresponds to previous estimated glucose values,
CH corresponds to previously ingested carbohydrates and IS and
IL correspond to previously injected insulin for both types, short
and long effect. It should be noted that the model will provide es-

timated glucose values, denoted as ĜL. Hence, for each time step,
estimated glucose is obtained by using previous estimated glucose
values and actual carbohydrates and insulin units. Therefore, the
dataset should provide input values for the variables in our glucose
model proposal. Table 1 shows a reduced version of a data set for
one of the in-silico patients under study. Table 1 shows an example
of the dataset of one of the in-silico patients, named Joy Wilson.
For each time step, represented in one line of the table, k is the ac-
tual time, GL is the actual glucose level, CH is the carbohydrates
units ingested, IS is the short effect insulin injected and IL is the
long effect insulin injected.

Now we will briefly descrribe de set of classical techniques ap-
plied and also the features ans structure of the GP prediction tool.

3.2 Classical simple exponential smoothing
When we have a time series with no visible trend or seasonal

behaviour we can employ one of the exponential methods of smoot-
hing to forecast future values. The most basic version of them is
called: Simple Exponential Smoothing or SES and it is shown in its
general form in the Equation 3. In the instant t, We want to get a

k GL CH IS IL

· · · · · · · · · · · · · · ·
30 170.88974 0 0 0
31 171.55425 0 0 0
32 172.27976 0 3 12
33 173.05923 30 0 0
34 174.09018 0 0 0
· · · · · · · · · · · · · · ·
40 237.54628 0 0 0
41 247.25104 20 0 0
42 250.72465 0 0 0
43 251.90543 0 0 0
· · · · · · · · · · · · · · ·

Table 1: Portion of a 24-hours dataset for a in-silico patien (Joy
Wilson).

prediction with a horizon of H minutes, so we use the weighted
observations during period P , previous to instant t. As we can see
in this equation, we can change the weights associated with each
observation varying the α parameter. In the dataset we have expe-
rimented with, we found that the best results were for values of α
close to one. this way, Equation 3 becomes Equation 4 and our pre-
dictions at horizon H are just the value of the glucose at time t. So,
we hope that a good forecasting technique can, at least, beat SES
(we will see in the section 5 that when H = 120 this is not easy).

ŷt+H|t =
P−1∑
j=0

α(1− α)jyt−j (3)

α ≈ 1 ⇒ ŷt+H|t = yt (4)

3.3 Holt’s smoothing: linear, exponential and
damped

Now, let’s take into account the possibility of our glucose series
is exhibiting some form of trend (constant or not). So, in Equation
(5) we add a slope component to SES and, therefore, we need now
two smoothing parameters, Equations (6) and (7). This is the basis
of the Holt’s method (1957) and we call it: HOLT_linear as the
forecasts are a linear function of h.

ŷt+H|t = Levelt +H ∗ Slopet (5)

Levelt = α0yt + (1− α0)(Levelt−1 + Slopet−1 (6)

Slopet = α1(Levelt − Levelt−1) + (1− α1)Slopet−1 (7)

ŷt+H|t = Levelt ∗ SlopeHt (8)

Levelt = α0yt + (1− α0)(Levelt−1 ∗ Slopet−1 (9)

Slopet = α1(
Levelt

Levelt−1
) + (1− α1)Slopet−1 (10)

ŷt+H|t = Levelt + (φ+ φ2 + · · ·+ φn)Slopet (11)
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Levelt = α0yt + (1− α0)(Levelt−1 + φSlopet−1 (12)

Slopet = α1(Levelt − Levelt−1) + (1− α1)φSlopet−1 (13)

We have also employed two variants of the Holt’s method that
we have called HOLT_exp and HOLT_damped. In the first, instead
of adding, we multiply the level and the slope, Equations (8), (9)
and (10). In the second, we have added a damping parameter φ
(between 0 and 1), Equations (11), (12) and (13). This conservative
idea was proposed by Gardner and McKenzie (1985) and, as we
will see, suits well glucose time series for the highest values of H .

3.4 Classical Holt and Winters
The most general expression of the Holt’s method that inclu-

des a seasonal component is the HOLT-WINTERS method. In the
Equations (14), (15), (16) and (17), we show the additive version
in which the seasonal variations don’t depend on the level of the
series. The multiplicative version would add an useless comple-
xity to the glucose time series. As before, we employ a period P
to make the calculus. Although the seasonal component practically
disapears in the real patients, it has a small representation in the
in-silico patients, so we decided to included it in this study.

ŷt+H|t = Levelt +HSlopet + Seasonalt−P (14)

Levelt = α0yt + (1− α0)(Levelt−1 + φSlopet−1 (15)

Slopet = α1(Levelt − Levelt−1) + (1− α1)φSlopet−1 (16)

Seasonalt = γ(yt+Levelt−1−Slopet−1)+(1−γ)Seasonalt−P

(17)

3.5 ARIMA
The last classical technique that we have experimented with is

the non-seasonal auto regressive integrated moving average (ARI-
MA) model, Equation (18).

ẏ = c+φ1ẏt−1+· · ·+φpẏt−p+θ1et−1+· · ·+θqet−q+et (18)

We can divide the last equation in two parts. The first part, Equa-
tion (19) is a regression of xt based on the observations during
period P , that is to say, is an autoregression. The other part of
(18) is (20). This equation is a linear combination of the current
error term and the q most recent past error terms during period P .
This is the Moving Average part and it must not be confused with
the weighted moving average that we employed in the exponential
smoothing techniques. Integrated means that we have removed drift
(if present) by differencing the time series.

y = c+ φ1yt−1 + · · ·+ φpyt−p + et (19)

y = c+ et + θ1et−1 + · · ·+ θqet−q (20)

3.6 Genetic Programming
We have applied symbolic regression based on GP using a struc-

ture identification framework described by Winkler (2009) and Af-
fenzeller et al. [3]. We have used the following parameter settings
for our GP test series: The mutation rate was set to 15o %, gen-
der specific parents selection (combining random and roulette se-
lection) was applied as well as strict offspring selection [3] (OS,
with success ratio as well as comparison factor set to 1.0); Figu-

re 2 shows the GP cycle with OS. The functions set described in
[2] (including arithmetic as well as logical functions) was used for
building composite function expressions. The maximum model size
was set to 50; the population size was set to 100 and the maximum
selection pressure was also set to 100. We used the GP implementa-
tion in HeuristicLab [14]. For each patient we trained models with
minimum time delay 90 minuted and with minimum time delay
120. We executed a GP ensemble modeling approach: For each tar-
get (i.e. for each patient and min time delay 90 and 120, resp.) we
executed GP 10 times, the best 5 models (on training data) were
collected and their estimated values on the test data were averaged.

Figure 2: Genetic programming including offspring selection (Af-
fenzeller et al. 2009).

3.7 Wavelet Power Spectrum
The Wavelet Power Spectrum is a visual way that allow us to

react on certain events (like oscillations, peaks or discontinuities)
that are within the time series. The power spectrum shows the energy
distribution over different frequencies of a time series as a whole
and the Wavelet Power Spectrum give us a similar vision but for
every observation of the time series. The theory behind Wavelets is
huge and complex and we suggest the reading of [15] for a deeper
understanding. Here, we enumerate the basic recipe for getting a
Wavelet Power Spectrum:

First, we make a convolution of the glucose and the Morlet
wavelet function with a certain width (scale) throughout the
whole time series.

We repeat the previous step for different scale values. For so-
me scale values we need to fill the series with a zero padding.
The results obtained this way are shown in the plot in a stri-
ped zone and the proper values can be seen inside a cone-like
region.

This way, for every minute of the dataset we get the wavelet
coefficients at different scales.

Last, we plot the contour of the square of the absolute values
of the wavelet transform.

We use Wavelet Power Spectrum as a tool for input data analysis
in the last part of the paper.

4. EXPERIMENTAL SETUP
In this section we describe the characteristics of the eight in-

silico patients we deal with, as well as the configuration of each set
of experiments. As we have explained, we predict a future value of
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the level of glucose in the patient’s blood depending on, at least, the
glucose level, the carbohydrates ingested and the insulin injected.
Hence we need to consider those values in our datasets.

4.1 In-silico Patients
We work with a set of 10 in-silico patients obtained with AIDA

simulator (www2aida.org). More precisely, our data series repre-
sent measures taken each minute along the day. (see section 3.1
for details). This simulator although a bit old allows to obtain data
series for simulated patients (in-silico patients) that can be indivi-
dualized for different situations usually present in the daily clinical
practique. For this purpose, the simulator offers several characte-
rized patients. The glucose values for each patient were obtained
by introducing different carbohydrates and insulin values and then
running the simulator. The description of each one of the patients
can be found on the website, but we replicate them here for the
sake of clarity. The patients are the following: Joy Wilson. This
woman is on three injections of short and/or intermediate acting
insulin each day, with a split-evening dose. She wants to start a fa-
mily, but consistently has had quite high blood glucose levels in the
early afternoon.

Howard Kistler. This 45 year old man was diagnosed as having
diabetes at the age of 14. He is currently on a regimen of combined
short and/or intermediate acting insulin preparations four times per
day. He tends to higher blood glucose values overnight but has a
low blood glucose in the mid-morning.

Steven Jones. This man is a relatively newly diagnosed insulin-
dependent (type 1) diabetic patient. He tends to quite high blood
glucose levels in the middle of the day, despite not eating excessi-
vely.

Elizabeth Whittaker. She still often goes hypoglycemic in the
middle of the day, especially between breakfast and lunch. She is on
a slightly unusual regimen taking a short acting insulin preparation
three times per day, with an intermediate acting preparation twice
a day – at lunchtime and before bed.

Lizzy Laurence. This overweight 58 year old insulin-dependent
(type 1) diabetic patient has had major problems losing weight. She
is quite sensitive to insulin. In addition, she smokes and is at great
risk of suffering a heart attack or stroke.

Mohammed Abdullah. This man often wakes with ’sweats’ and
feeling profoundly unwell in the middle of the night. However, his
blood sugars are quite respectable when he gets up at 7:30 AM. In
such a situation he needs to measure his blood glucose when he
wakes in the middle of the night, feeling unwell. Clearly injecting
so much insulin before he goes to bed isn’t a good idea.

David Robins. This 18 year old insulin-dependent patient has
just left home for the first time to go to the University. He isn’t
a very good cook and hasn’t been taking good care of himself. He
feels pretty awful most mornings and even going to bed early hasn’t
helped. He tends to quite low blood sugars in the morning, at times
being at risk of going ’hypo’.

Wendy. This 50 year old insulin-dependent diabetic woman has
quite high blood sugars throughout most of the day, especially after
lunch. She is adamant that she can’t change her diet - she attends
a lot of business lunches and dinners.She also refuses to inject any
more frequently than two times per day.

David Jones. This 34 year old insulin-dependent diabetic man
(diagnosed as a boy aged 8) has impaired renal function as a result
of diabetic nephropathy. He tends to run very high blood glucose
levels overnight, which will be contributing to the appearance of
his diabetic complications.

Hugh Allibaster. This 35 year old insulin-dependent diabetic
man recently switched to using an insulin pen, injecting three ’shots’

of short-acting insulin before breakfast, lunch, and dinner, while ta-
king a single dose of long-acting insulin before going to bed. Ho-
wever, he hasn’t quite gotten full control of his blood sugars, still
tending towards high blood glucose levels overnight.

4.2 Real Patient
After developing all the experiments we have also used some da-

ta of a real patient. In the case of the real patient, we collected these
data with the help of the patient. Actual glucose values were obtai-
ned with a continuous glucose monitoring system (CGMS) during
five days. Carbohydrate units ingested are calculated based on the
daily meals. Insulin injected, distinguished by insulin type, is also
an information that the patient usually write down using either an
application [8], a diary or the CGMS . The selected patient is a pa-
tient with a great glycemic variation, with 3 years of evolution of
the diabetes ilness. 1

5. EXPERIMENTAL RESULTS
In Figure 3 we can see the power spectrum plot which shows

the energy distribution over different frequencies of a glucose time
series from a real patient. The maxima of energy are detected at
scales higher than 512 and 1024 min. which corresponds to cycles
of 8, 16 and 24 hours and are the rhythmic biological cycles of a
normal person’s life. As we can see it is very difficult to detect any
other frequency that can help us to forecast glucose levels. From
a different point of view, Figures 5 and 6 show the same idea. On
those figures we present a segment of the phase space trajectory
for a in-silico and a real patient respectively. The phase space plot
has three axis, one for the current observation at instant t and the
other two for the observations with lags (t-l) and (t-2l). For instance
Lag1 = 15, lag2 = 30 means that each point represents (t, t-15, t-
30). This way we embed the trajectory of the time series in a 3D
plot and we expect that recurrent behaviour, if exists, will show
up. As we can see, the longer the lag, the more confused the phase
space trajectory gets, which is a clear sign that explains why all
the forecasting algorithms are performing so poorly for the longest
prediction horizons in this study. We can also detect that, although
we can hardly find some trajectories for the in-silico patient, the
situation is even worst for the Real Patient (Figure 6).

Now, we compare GP with classical techniques. On Table 2 we
show the mean absolute percentage error (MAPE) for 10 in-silico
patient and every technique distinguishing amongst the four predic-
tion horizons. Several conclusions arise from this table (although
no complete significance statistical test are performed yet):

In the 30 minutes horizon, all the classical techniques are
better than the Simple Exponential Smoothing (SES). In the
120 minutes horizon, only the HOLT_damped technique is
better than SES.

The ARIMA model (lighter background color) is the best al-
gorithm for every patient in the 30 minute horizon and for
the majority of them in the 60 minutes horizon. Neverthe-
less, for 90 and 120 minutes, the best results are achieved by
HOLT_damped and Genetic Programming (GP).

1We would like to note that on 27 December 2010, the Clinical
Research Ethics Committee of the Hospital of Toledo authorized
the development of the computer application for collecting data. It
also noted that at the time of recruiting patients for the study of
its usefulness must resubmit for approval. to this or another Ethics
Committee. On 6 June 2012 he Clinical Research Ethics Commit-
tee of the Hospital of Alcalá de Henares, Madrid authorized the use
of the data collected, provided that the privacy of the data is ensured
and the informed consent of patients is made.
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GP obtains much better results with Elizabet Whittaker and
Howard Kitsler than the classical techniques in the 90 and
120 minutes horizon. The sudden oscillations of these two
patients are only modelled using GP.

With David Robins, all techniques fall down. Robins’ gluco-
se level falls down during night in a steady way and ascends
abruptly afterwards and it seems that it is going to be very
difficult to model.

Figure 3: The power spectrum shows the energy distribution over
different frequencies of a time series.

6. CONCLUSIONS
In this paper we have compared a set of classical techniques with

GP. We can say, despite a deeper statistical analysis needed, that at
120 minutes the best prediction techniques are GP, HOLT damped
and SES. These two last techniques really are a way to leave and
recognize the difficulty of predicting. Although GP has improved
its results for some patients, the high level of error in their predic-
tions to 120 min could cause serious problems if used in an artificial
pancreas.

The next step initiated in this paper is to analyze the time series
data of glucose levels in terms of the predictability. We have also
analyzed data in terms of the space trajectory and the power spec-
trum for the 10 in-silico patients and also for a real patient. We can
see some correlation of the values of glucose at time t with those at
time t−30 and t−15 for the in-silico patient. However we can not
say the same for t−60, t−90 and t−120, which clearly indicates
the noisy nature of the series. The situation is even worst for the
case of real patients.

We can conclude that we need to combine GP techniques and
improve also previous approximation with Grammatical Evolution
made in previous works. We should seek for alternative grammars
prepared for dynamic environments that incorporate mechanisms
for generating constant and dynamic grammars.
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Figure 4: Predictions using genetic Programming for 90 and 120 minutes. For the shake of clarity, we present here only 4 patients. Other
patients have similar figures to one of those, in terms of predictions, hypo and hyperglycemias, etc..
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(a) Lag1 = 15, lag2 = 30
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(b) Lag1 = 30, lag2 = 60
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(c) Lag1 = 60, lag2 = 120
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(d) Lag1 = 120, lag2 = 240

Figure 5: Segment of the phase space trajectory for in-silico patient
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(c) Lag1 = 60, lag2 = 120
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Figure 6: Segment of the phase space trajectory for real patient
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Table 2: Mean Absolute Percentage Error (MAPE)
(a) Prediction horizon 30 min

SES HOLT_linear HOLT_damped HOLT_exp HOLT_WINTERS ARIMA GP

David Jones 4,68 2,05 2,21 2,05 2,06 1,16 3,71
David Robins 7,68 4,86 4,56 4,89 4,89 4,51 7,00

Hugh Allibaster 4,82 2,01 2,05 2,04 2,03 1,32 8,52
Lizzy Laurence 4,03 1,43 1,71 1,44 1,44 0,83 4,60

Mohammed Abdullah 5,11 2,02 2,27 2,02 2,03 1,21 3,16
Wendy Couger 5,21 1,68 2,07 1,72 1,69 1,16 4,51

Elizabeth Whittaker 11,15 5,52 5,55 5,46 5,55 5,17 5,17
Howard Kistler 8,52 4,02 4,01 4,13 4,04 3,39 2,74

Joy Wilson 5,40 1,91 2,27 1,91 1,92 1,09 2,70
Steven Jones 4,45 1,96 1,98 1,96 1,98 1,19 2,43

Average 6,11 2,75 2,87 2,76 2,76 2,10 4,45

(b) Prediction horizon 60 min

SES HOLT_linear HOLT_damped HOLT_exp HOLT_WINTERS ARIMA GP

David Jones 8,41 6,97 6,18 6,94 6,99 5,91 7,79
David Robins 13,96 13,82 11,36 13,77 13,87 14,85 14,98

Hugh Allibaster 8,87 6,86 5,82 6,92 6,88 6,11 8,74
Lizzy Laurence 7,47 5,07 4,95 5,20 5,09 4,27 8,98

Mohammed Abdullah 9,23 7,03 6,40 7,23 7,05 6,18 5,81
Wendy Couger 9,81 5,89 5,88 6,10 5,91 4,97 8,41

Elizabeth Whittaker 21,47 16,93 14,85 16,07 16,97 18,68 6,09
Howard Kistler 16,24 12,32 10,67 12,68 12,36 12,42 4,88

Joy Wilson 10,27 6,63 6,47 6,63 6,65 5,40 3,99
Steven Jones 8,30 6,71 5,65 6,71 6,73 5,77 5,30

Average 11,40 8,82 7,82 8,82 8,85 8,46 7,50

(c) Prediction horizon 90 min

SES HOLT_linear HOLT_damped HOLT_exp HOLT_WINTERS ARIMA GP

David Jones 11,04 13,06 9,68 12,99 13,09 13,61 12,13
David Robins 18,75 24,93 17,98 24,99 24,99 28,95 18,54

Hugh Allibaster 12,20 13,17 9,59 13,35 13,20 13,72 22,68
Lizzy Laurence 10,25 10,00 8,11 10,44 10,02 10,35 19,18

Mohammed Abdullah 12,42 13,47 10,18 14,27 13,50 14,43 11,32
Wendy Couger 13,89 11,77 9,99 12,50 11,79 11,38 14,10

Elizabeth Whittaker 30,05 30,46 25,06 29,68 30,51 36,54 8,41
Howard Kistler 22,75 23,11 17,58 24,44 23,15 24,75 10,10

Joy Wilson 14,38 13,14 10,87 13,14 13,17 12,92 8,35
Steven Jones 11,39 12,57 9,25 12,57 12,59 13,10 8,61

Average 15,71 16,57 12,83 16,84 16,60 17,97 13,34

(d) Prediction horizon 120 min

SES HOLT_linear HOLT_damped HOLT_exp HOLT_WINTERS ARIMA GP

David Jones 13,07 18,94 11,97 19,00 18,96 22,88 13,14
David Robins 22,47 37,22 23,37 38,34 37,29 45,14 23,77

Hugh Allibaster 14,92 20,03 12,85 20,60 20,06 22,92 20,23
Lizzy Laurence 12,61 15,60 10,82 16,65 15,63 18,24 22,63

Mohammed Abdullah 14,95 20,49 13,13 22,38 20,52 23,55 14,52
Wendy Couger 17,42 19,16 14,25 21,06 19,19 20,31 17,82

Elizabeth Whittaker 36,69 45,31 33,62 45,90 45,36 55,95 12,69
Howard Kistler 28,09 35,03 23,82 39,46 35,07 39,87 12,68

Joy Wilson 17,61 20,41 14,88 20,41 20,44 22,57 10,19
Steven Jones 13,63 18,76 12,23 18,76 18,79 21,54 9,24

Average 19,15 25,10 17,09 26,26 25,13 29,30 15,69
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