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ABSTRACT
This paper studies two landscapes of different instances of
the 0-1 knapsack problem. The instances are generated ran-
domly from varied weight distributions. We show that the
variation of the weights can be used to guide the selection of
the most suitable local search operator for a given instance.

Categories and Subject Descriptors
F.2.0 [Theory of Computation]: Analysis of algorithms
and problem complexity.
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1. THE 0-1 KNAPSACK PROBLEM
The classical 0-1 knapsack problem (0-1 KP) is defined

as follows: Given a knapsack of capacity C and a set of
n items each with associated weight wi and profit pi, the
aim is to find a subset of items that maximises f(x) =∑n

i=1 xipi, subject to
∑n

i=1 xiwi ≤ C,where x ∈ {0, 1}n,
C = λ

∑n
i=1 wi, and 0 ≤ λ ≤ 1. The binary vector x =

(x1, . . . , xn) represents the decision variable where xi = 1
when item i belongs to the subset and xi = 0 otherwise.
To avoid trivial instances, we only study instances where
wi ≤ C for all i = 1, . . . , n, and λ < 1.

We generated instances randomly with different correla-
tion between the fitness function coefficient pi and constraint
coefficient wi as in [4]. Based on the value of the correlation
coefficient, an instance is classified as uncorrelated, weakly
correlated, strongly correlated, inverse strongly correlated, or
subset sum. For each instance type we varied the tightness of
the capacity constraint by setting λ value between 0.1 to 0.9
with 0.1 step interval. Also, for each instance type, weights
are drawn randomly from five different discrete probabil-
ity distributions: uniform, normal, negatively skewed, posi-
tively skewed and bimodal distribution with peaks at both
ends. The variation of the weights is then measured by their
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coefficient of variation (CV = σ/µ). Ten random instances
were generated for each settings combination.

An infeasible solution x that violates the given constraint
is penalised by a value Pen(x) > 0, while Pen(x) = 0 for a
feasible solution x. The fitness functions after adding the
penalty term is f(x) =

∑n
i=1 xipi − Pen(x). In this paper,

we use the linear penalty function from [3] where the value
of the penalty grows linearly with respect to the degree of
constraint violation. We also add the term

∑n
i=1 pi to the

penalty function as an offset term that insures that all infea-
sible solutions achieve lower fitness values than all feasible
solutions [2]. The penalty after adding the offset term:

Pen(x) = ρ

(
n∑

i=1

xiwi − C

)
+

n∑
i=1

pi (1)

where ρ = max {pi/wi | i = 1, . . . , n}. We use this penalty
function with all instance types except for subset sum. Since
applying this penalty function to infeasible solutions in a
subset sum instance assigns equal fitness values for all infea-
sible solution, thus, creating large plateaus in the landscape.
We therefore choose this simple penalty function to use with
subset sum instances:

Pen(x) =

n∑
i=1

xiwi − C (2)

2. LANDSCAPE OF THE 0-1 KP
Landscape analysis allows us to study an optimisation

problem in connection with a neighbourhood structure de-
fined over the search space. The aim of such analysis is to
lead to a better understanding of the optimisation problem
structure. The gained insights could then be used to guide
the design or selection of the best search operators or param-
eter values to use. In this paper we study two landscapes of
the 0-1 KP induced by the Hamming 1 (H1 ) and Hamming
1+2 (H1+2 ) neighbourhood operators. The H1 operator is
the simple 1-bit flip mutation operator, the neighbourhood
size is thus |N(x)| = n. The neighbourhood of the H1+2 op-
erator includes the Hamming one neighbours plus the Ham-
ming two neighbours of the current solution. The neigh-
bourhood size for this operator is |N(x)| = n+(n(n−1)/2).
Only small problem sizes were considered to allow exhaus-
tive enumeration of the entire search space (n = 14, 18).

2.1 Number of Optima
A very large difference in the number of local optima was

found between the two landscape. The H1+2 landscape has
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less number of local optima in all instance types and all val-
ues of CV and λ, with the largest difference being found
in instances with small CV values. The number of optima
in the H1 landscape was found to be highly and negatively
correlated with the CV of the weights in the middle region
between very high and very low constraints (0.3 ≤ λ ≤ 0.7)
as depicted in Figure 1. In the H1+2 landscape, only inverse
strongly correlated instances were found to have a strong cor-
relation between the optima number and the CV with high
and positive correlation across all constraint levels. The cor-
relation in the subset sum and strongly correlated instances
is strong and positive but only in the very constrained and
very low constrained regions (λ ≤ 0.2, λ ≥ 0.8).
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Figure 1: Correlation between the CV of the weights
and the number of local optima versus λ (n = 18).

2.2 Basins of Attraction
We define the basin of attraction of an optimum as the

set of points that leads to it after applying steepest ascent
to them. The neighbours of a point are evaluated in an in-
creasing order and the first best improving neighbour is al-
ways selected. The correlation between the optimum basin
size and fitness has been conjectured to be related to prob-
lem difficulty. Previous studies have shown that landscapes,
where fitter optima have larger basins, tend to be easier to
search [5]. Figure 2 shows a very low positive and even nega-
tive correlation between the basin size and fitness in inverse
strongly correlated and subset sum instances. This indicates
that fitter optima do not necessarily have larger basins in
these instances and even worse bad optima tend to have
larger basins (when the correlation is negative). This could
mean that these instances are difficult for local search.
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Figure 2: Correlation between basin size and fitness
in the two landscapes (n = 14).

2.3 Local Search
We compare here the cost of finding the optimal value us-

ing a local search algorithm based on the underlying neigh-

bourhood of each landscape. Steepest ascent algorithm with
random restart was run 30 times per instance and with each
of the H1 and H1+2 neighbourhood operators. The cost
is then calculated using the number of used fitness evalu-
ations until the optimal value was found. Inverse strongly
correlated and subset sum instances had the highest aver-
age cost of finding the optimal solution while uncorrelated
instances had the lowest average cost. Results from section
2.2 suggests that the high cost in inverse strongly correlated
and subset sum instances is due to steepest ascent being at-
tracted to the large basins of local optima and having to
perform many restarts until it could find the small basin of
the optimal or one of the optimal solutions.

There is a trade-off between the number of fitness evalua-
tions needed to explore the neighbourhood and the difference
between the number of local optima between the two land-
scapes. When the difference is very large, it is better to use
the H1+2 operator even though the size of the neighbour-
hood is much larger as Figure 3 shows (CV < 0.3). When
the difference is moderate, it is better to use the H1 opera-
tor (in most instance types) even though the number of local
optima in the H1 landscape is higher (CV > 0.9).
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Figure 3: Number of instances where each operator
performed significantly better and instances where
no significant difference was found (Draw). Signifi-
cance determined using Wilcoxon rank-sum test.

3. CONCLUSIONS
The number of local optima in the H1 landscape was

found to be strongly and negatively correlated with weights
CV in moderately constrained instances of the 0-1 KP. We
showed that this correlation can be used to guide the choice
of the best search operator. These results are similar to the
results we obtained for the number partitioning problem [1].
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