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ABSTRACT
This paper introduces two surrogate models for continous
black-box optimization, Gaussian processes and random fo-
rests, as an alternative to the already used ordinal SVM
regression. We employ the CMA-ES as the reference opti-
mization method with which the surrogate models are com-
bined and also compared on subset of the noisless BBOB
testing set.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—global opti-
mization, unconstrained optimization

Keywords
Black-box optimization; Surrogate model; Gaussian process;
Random forest

1. INTRODUCTION
Evaluation of the real-world black-box objective functions

is often very time-consuming and/or costly in numerous op-
timization problems. Surrogate modelling is an approach to
decreasing the number of expensive function evaluations via
fitting and using a regression model of the objective func-
tion [3]. This model is trained on the already gathered
input–output-value pairs (xi, yi), i = 1, . . . , N and is used
instead of the original expensive fitness to evaluate some of
the points needed by the optimization algorithm. Because
the surrogate-model evaluations are always affected by some
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error, which could easily mislead the whole optimization pro-
cess, the original fitness has to be used for some part of the
points, too.

This paper investigates two surrogate models based on
Gaussian processes (GP) [4] and random forests (RF) [1],
which have partly similar properties (e.g. they inherently
provide estimation of the prediction error). The two models
are used as surrogate models for the CMA-ES, comparing
the speed-up of different settings of surrogate-assisted ver-
sion against the CMA-ES without the surrogate model.

2. SURROGATE CMA-ES
The surrogate models were integrated in the CMA-ES al-

gorithm in its fitness-evaluating part: the original fitness
evaluation is replaced with the Algorithm 1 forming our
modified algorithm, temporarily named Surrogate CMA-ES
(S-CMA-ES).

The algorithm follows up the standard CMA-ES sampling
of the new offspring (noted as step 1 in the pseudocode). It
is, in fact, a generation evolution control of combining the
original- and surrogate-evaluated samples: the whole off-
spring in each generation is either evaluated by the original
fitness (and a new GP/RF model is trained in this genera-
tion), or the offspring is evaluated by the previously trained
model. Model estimated y-values are linearly transformed
in order not to be lower than the so-far optimum (step 15).

3. EXPERIMENT
GP and RF were tested1 on the BBOB benchmark func-

tions [2] f1−3, f5−6, f8, f10−14, f20−21 in dimensions 2, 5, and
10.

First, GP and RF parameters resulting in the best regres-
sion performance were identified. These parameters for GP
include the type of covariance function cov and starting val-
ues for noise variance σ2

n, characteristic length-scale ` and
signal variance σ2

f . RF comprised 100 trees, each contain-
ing at least pl training points in each leaf, growing on the

1the source code is freely available at https://github.com/
bajeluk/surrogate-cmaes
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Algorithm 1 Surrogate CMA-ES Algorithm

Input: g (generation), gm (number of model generations),
σ, λ, m, C (CMA-ES internal variables),
r (maximal distance between training points and m),
nREQ (minimal number of points for model training),
nMAX (maximal number of points for model training),
A (archive), fM (model), f (original fitness function)

1: xk ∼ N
(
m, σ2C

)
k = 1, . . . , λ {CMA-ES sampling}

2: if g is original-evaluated then
3: yk ← f(xk) k = 1, . . . , λ {fitness evaluation}
4: A = A ∪ {(xk, yk)}λk=1

5: (Xtr,ytr)← {(x, y)∈A|(m−x)>σC−1/2(m−x) ≤ r}
6: if |Xtr| ≥ nREQ then
7: (Xtr,ytr)← choose nMAX points if |Xtr| > nMAX

8: fM ← trainModel(Xtr,ytr)
9: mark (g + 1) as model-evaluated

10: else
11: mark (g + 1) as original-evaluated
12: end if
13: else
14: yk ← fM(xk) k = 1, . . . , λ {model evaluation}
15: {shift yk values if (min yk) < best y from A}

yk = yk + max{0, minA y −min yk} k = 1, . . . , λ
16: if gm model generations passed then
17: mark (g + 1) as original-evaluated
18: end if
19: end if
Output: fM, A, (yk)λk=1

RF GP

pl ∈ {2, 5, 8} cov ∈ {KSE,K
ν=3/2
Matérn,K

ν=5/2
Matérn}

ϕ ∈ {0.5, 0.8,1} exp(σ2
f , `) ∈ {(0.01, 0.05), (0.05, 0.25), (0.25, 1), (0.5,2), (1, 5)}

pr ∈ {0, 1, 3,5} exp(σ2
f , `) ∈ {(0.01, 0.1), (0.1, 10), (1, 103), (5, 104)} (for KSE)

expσ2
n ∈ {0.01, 0.1, 1}

Table 1: Model parameter settings for regression
testing. The best-observed values are typeset in bold and
were used for BBOB optimization experiments.

proportion ϕ of training points sampled with replacement
from the training data. In addition, only trees predicting
pr training points with the best fitness value in the right
order were included in forests. A grid search was performed
through the parameter values shown in Table 1.

The best found model settings (see Table 1) were used
in the BBOB optimization experiments in which the best
number of model generations gm ∈ {1, 2, 3} was identified
as gm = 3 for GP and gm = 1 for RF.

Based on the data from the BBOB optimization experi-
ments, Figure 1 shows S-CMA-ES speed-up compared to the
original CMA-ES. Both the S-CMA-ES models mostly out-
perform the CMA-ES in initial phases of the optimization
process, especially on functions f1, f5, f10, f13, f20. However,
the speed-up is decreasing with the increasing number of
evaluations.
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Figure 1: Speed-up of the GP- and RF-based S-CMA-
ES compared to the CMA-ES. Ratios of distances to
optimum according to the expected number of fitness evalu-
ations divided by dimension for f1−3, f5−6 and f8 (first row)
and f10−14, f20−21 (second row) in dimensions 2, 5, and 10.
Medians were taken from 20 independent runs for each func-
tion/dimension combination.
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