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ABSTRACT
We present an approach for the automatic solving of the
scheduling and allocation problem in multicore environments,
as well as assigning optimal voltage and frequency levels
to each core, using a multiobjective evolutionary algorithm
(EA) where both energy consumption and the makespan are
optimised and all deadlines are met. The main advantage of
our approach is that we deal with all the aspects of the prob-
lem at once, which allows searching the whole solution space.
In addition, the algorithm introduces the possibility of task
migration, which is a novelty in EA-based approaches. Our
results show that proper scheduling and allocation can pro-
vide significant energy savings in different scenarios: for our
test case, and comparing to the well known YDS algorithm,
up to 76% on average in the case of loose deadlines, and up
70% on average in the case of tight deadlines can be saved.

CCS Concepts
•Computing methodologies → Planning for deter-
ministic actions; •Information systems→ Information
systems applications;
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1. INTRODUCTION
The objective of this work is to efficiently solve the general

problem of the scheduling and allocation of different tasks
in multicore environments, and assign voltage and clock fre-
quency to each core in a way the total energy consump-
tion is minimised, while meeting all task deadlines. The
tasks are characterised with their release time, execution
time and deadline. In general, this problem is NP-hard,
and it has been typically solved with heuristic algorithms
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since they can provide good solutions within an acceptable
amount of time. For this reason, we use Evolutionary Algo-
rithms (EAs). Furthermore, different levels of voltage and
frequency are achieved by applying the Dynamic Voltage
and Frequency Scaling (DVFS) technique. Since this tech-
nique reduces energy, but increases execution time, these
two magnitudes are in conflict. For this reason, we use mul-
tiobjective optimisation.

All the existing solutions based on EA or Genetic Algo-
rithms (GA) that treat a similar problem address it by di-
viding it into subproblems by first performing the schedul-
ing, and then assigning the proper values of voltage and
frequency. In this way the search space is reduced, which is
not the case with our solution. Finally as far as we know,
none of the existing solutions introduces the possibility of
task migration.

We test our approach on multicore voltage and frequency
scalable architectures designed by XMOS [2]. For this rea-
son, our EA is based on an existing instruction-level energy
model, which is described in [1]. However, the approach can
easily be adapted to any multicore environment.

2. OUR PROPOSED APPROACH
We use the multiobjective NSGA-II algorithm to approx-

imate the Pareto front, where the objectives are the energy
consumption, calculated in the way presented in [1], and the
execution time, calculated as the time spent until the last
task finishes its execution. Both magnitudes should be min-
imised. However, all task deadlines have also to be met: the
execution time objective is penalised by multiplying it by 10
for each task that does not met its deadline.

2.1 Representation of Individuals
Our proposed representation for individuals is shown in

Fig.1. Each gene representing a unique task ID is followed
by a gene representing the number of cycles of the task that
is being executed in the current run. The order of task
IDs represents the order of their temporal execution, i.e,
scheduling. We also use negative two digit numbers to code
the spatial allocation of the tasks in order to distinguish it
from the tasks. The first digit represents the core where the
tasks are being executed and the second one an encoding
of the (V, f) state of that core. The tasks following the
allocation code are executed on that coded location.

The population is randomly initialised: tasks are assigned
to random cores and random number of cycles are assigned
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Figure 1: An example of (part of) an individual.

to tasks. However, the probability of selecting a core de-
creases as more tasks are assigned to it.

2.2 Solution Perturbations

2.2.1 The Crossover Operator
We have designed our own operator in the following way:

each child takes the order of appearance of the tasks and
their allocation from one of the parents. However, it can
take the distribution of the number of cycles from any of
the parents with equal probability.

2.2.2 The Mutation Operator
The mutation operator can perform different actions in-

volving one or two tasks. Consider two tasks i and t. In
each generation we perform one of the following operations
with the same probability: swapping: i and t, together with
their corresponding number of cycles, change their positions
in the solution; moving : move i to a random position j; and
changing the number of cycles: assigns a different number
of cycles to task i in all of its appearances.

3. EXPERIMENTAL EVALUATION
The great majority of the existing work on applying DVFS

concentrates only on dynamic power. However, it is not
beneficial to scale down voltage and frequency indefinitely:
as we keep decreasing the dynamic power, the static power
is increased, which at some point becomes the predominant
part, and as a result, the total power starts increasing again.
This issue becomes important in the case when the tasks
have loose deadlines. We have experimentally compared the
energy savings obtatined by our EA-based algorithm with
the YDS algorithm [3], which was designed having in mind
only dynamic power. The results, obtained by repeating
the same experiment 20 times, are presented in Figures 2
and 3 for the scenarios where task deadlines are loose and
tight respectivelly. As we can observe from Figure 2, energy
savings are significant when task deadlines are loose: on
average, up to 76.57% after 200 generations.

Moreover, Figure 3 shows that our EA-based algorithm
can find a feasible solution even if task deadlines are tight,
obtaining average savings of up to 70.4% after 150 genera-
tions. We believe that the reasons for such improvements are
the following, in this order: taking into account the static
power, the energy-aware scheduling of the tasks, and the
good characteristic of EA of not getting stuck in a local op-
timum, which can happen in the YDS algorithm.

4. CONCLUSIONS AND FUTURE WORK
We have presented an approach for energy-aware schedul-

ing, allocation and optimal DVFS assignment of a set of
tasks in a multicore environment based on EAs. Our exper-
imental results show the great potential of our approach.
However, the energy model we use introduces significant

Figure 2: Energy savings of our EA algorithm vs.
YDS when task deadlines are loose.

Figure 3: Energy savings of our EA algorithm vs.
YDS when task deadlines are tight.

time overhead. In order to overcome this issue we plan to
use a static analysis that estimates the energy consumed by
concurrent tasks (without actually running them) which will
significantly speed up our approach, since such estimations
can be efficiently computed.
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