
Herding Evolutionary Algorithm

Arnaud Berny
arnaud@courros.fr

ABSTRACT
In this paper, we address the problem of black box opti-
mization over binary vectors. We introduce a novel evo-
lutionary algorithm called Herding Evolutionary Algorithm
which relies on herding to generate individuals with empir-
ical moments close to those of selected individuals. We re-
port experiments with diverse fitness functions and compare
the results of HEA with those of simulated annealing, local
search, and PBIL. Although in its early developments, HEA
shows promising results.

CCS Concepts
•Mathematics of computing → Evolutionary algo-
rithms; •Computing methodologies→Discrete space
search;

Keywords
Herding; black box optimization; binary vectors

1. INTRODUCTION
Herding [7, 6] is an efficient deterministic algorithm which

approximately solves the moment matching problem. To the
best of our knowledge, it has not yet been applied to evo-
lutionary algorithms or, more generally, to black box opti-
mization over binary vectors.

We introduce a novel evolutionary algorithm called Herd-
ing Evolutionary Algorithm (HEA) which is reminiscent of
PBIL [2]. HEA departs from traditional Estimation of Dis-
tribution Algorithms in that it does not build any explicit
statistical model of the population; instead, it explores the
search space by pursuing the empirical first and second mo-
ments of selected individuals.

The paper is organized as follows. In Section 2, we recall
the principles of herding. In Section 3, we introduce HEA.
In Section 4, we report the results of HEA and other search
algorithms. Section 5 concludes the paper.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO’15 Companion, July 11–15, 2015, Madrid, Spain.
c© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3488-4/15/07.

DOI: http://dx.doi.org/10.1145/2739482.2764660

2. HERDING
Let X denote the sample space. We will consider the cases
X = {0, 1}n (binary variables) and X = {−1, 1}n (spin vari-
ables). Let F denote the feature space and Φ the feature
map from X to F . Since we aim at modeling and simulat-
ing correlated variables, let Φ(x) be the vector made of all

xi and all xixj , i < j, and let F = Rn(n+1)/2. Let p be some
probability distribution on X . Let µ denote the expectation
of Φ w.r.t. p or µ = Ex∼p Φ(x). In particular, µi = Ex∼p(xi)
and µij = Ex∼p(xixj). The moment matching problem con-
sists in sampling from a probability distribution q on X such
that expectations of Φ w.r.t. p and q coincide. Herding is
an approximate solution to the moment matching problem.

The empirical moment of a sequence (xk)tk=1 is defined
by µ̃t = 1

t

∑t
k=1 Φ(xk). Given (xk)tk=1, define µ̃t+1(x) =

1
t+1

(∑t
k=1 Φ(xk) + Φ(x)

)
. Herding generates samples by

minimizing the distance between empirical and target mo-
ments. More precisely, define the sequence (xt)∞t=1 by xt+1 ∈
arg minx

∥∥µ− µ̃t+1(x)
∥∥. This dynamical system is deter-

ministic, insofar as all minimizers xt are unique. Let us

write µ− µ̃t+1(x) = ∆µt−Φ(x)
t+1

, where ∆µt = (t+ 1)µ− tµ̃t.
Then, xt+1 ∈ arg minx

∥∥∆µt − Φ(x)
∥∥ and ∆µt+1 = ∆µt +

µ − Φ(xt+1). The original herding algorithm [7, 6] is de-
fined by xt+1 ∈ arg maxx〈∆µt,Φ(x)〉. Its theoretical anal-
ysis provides a O(1/t) bound on moment discrepancy [7,
4, 1], instead of O(1/

√
t) in the case of i.i.d. random vec-

tors distributed according to p. Both herding algorithms are
equivalent if ‖Φ(x)‖ does not depend on x. This is the case
if X = {−1, 1}n but not if X = {0, 1}n. We will consider
three different herding algorithms: hmin (binary variables,
norm minimization), hmax (binary variables, inner product
maximization), and h± (spin variables).

Minimizing
∥∥∆µt − Φ(x)

∥∥ over {0, 1}n is NP-hard, hence
the need for an approximation algorithm for hmin. Let ν =

1− 2∆µt. Up to some constant,
∥∥∆µt − Φ(x)

∥∥2
=
∑
i sixi,

where si = νi +
∑
j<i νijxj does not depend on xj for j ≥ i.

The greedy algorithm determines each component from x1

to xn. In order to compute xi given (xj)
i−1
j=1, it minimizes

the partial sum
∑i
j=1 sjxj , which reduces to minimizing

sixi alone: if si < 0 then xi = 1 else xi = 0. We apply
the same method to hmax and h±. Up to some constant,
〈∆µt,Φ(x)〉 =

∑
i sixi, where si = ∆µti +

∑
j<i ∆µtijxj . We

also consider the following randomization technique: at each
iteration, the algorithm uniformly samples a permutation π
and computes each component from xπ(1) to xπ(n). Herding
algorithms with random permutations will be denoted by
hpmax, hpmin, and hp± respectively.

1355



Algorithm J5 J10 FP5 FP10 BQP MS NK LA SC SCs EP
SA 95 90 194 189 727.89 956 97.90 4.72 1.88 0.85 1.03× 10−23

LS 95 90 118 24 718.11 954 91.27 4.42 2.02 0.91 4.82× 10−24

PBIL 100 90 194 189 681.65 954 91.64 3.85 0.08 0.06 6.97× 10−24

HEA (hmax) 100 90 194 100 723.08 949 84.15 4.09 1.63 0.87 2.10× 10−23

HEA (hpmax) 100 100 194 189 719.90 955 93.61 3.89 0.20 0.28 2.86× 10−23

HEA (hmin) 95 90 194 100 685.27 952 81.74 3.76 0.86 0.74 6.53× 10−23

HEA (hpmin) 100 100 194 189 716.51 953 93.61 3.98 0.22 0.39 3.99× 10−23

HEA (h±) 95 90 161 100 698.63 955 88.55 3.41 0.33 1.42 1.57× 10−22

HEA (hp±) 100 90 194 189 725.00 955 93.50 4.07 0.50 0.30 2.03× 10−23

Table 1: Results. For stochastic algorithms, the median of 20 extrema is displayed.

3. HEA
The target moment µ is initialized to the moment of the

uniform distribution on X . An HEA iteration is as follows:
1. Sample P individuals by means of herding. 2. Evaluate
the population with the fitness function. 3. Select P ′ indi-
viduals according to their ranks. 4. Compute their empir-
ical moment µ∗. 5. Update the target moment according
to µ← µ+ α(µ∗ − µ), where α is the learning rate.

As a consequence of the evolutionary process, the target
moment is now time-varying. Experimentally, we observe a
divergence (rapid increase) of the moment discrepancy in the
case of HEA algorithms with a constant learning rate. HEA
with hmin, hmax, h±, and hp± diverge at iteration k = 1/α
whereas HEA with hpmin and hpmax diverge at k = 1/4α.
Moreover, HEA algorithms almost never improve on the best
solution after the divergence. This suggests to set α = 1/K
or 1/4K where K is the total number of iterations. Alterna-
tively, we propose an exponentially decreasing learning rate
αk = α0e

−k/τ , where α0 = e/τ or e/4τ .

4. EXPERIMENTS
We have considered different classes of fitness functions

(to be maximized unless otherwise stated): Jump (see be-
low, t = 5 or 10), Four Peaks [2] (threshold t = 5 or
10), Boolean Quadratic Programming (random instance),
MaxSAT (random instance ms-s3v80c1000-1 from Max-SAT
2013), NK landscapes (random instance, k = 3), Low Au-
tocorrelation Binary String (see below), Summation Can-
cellation [3] (minimization), Summation Cancellation with
sinus [5] (minimization), and Equal Products [3] (minimiza-
tion, random instance). The Jump function is defined by
f(x) = 0 if n − t < ‖x‖1 < n, f(x) = ‖x‖1 otherwise.
The LABS function is defined by f(x) = F (s), where s =
2x− 1 ∈ {−1, 1}n, F (s) = n2/2E(s), E(s) =

∑n−1
k=1 Ck(s)2,

and Ck(s) =
∑n−k
i=1 sisi+k. The dimension of the search

space is n = 100 for all problems except MaxSAT (n = 80)
and Summation Cancellation problems (n = 99).

Each algorithm has been allocated 2× 105 function eval-
uations. For randomized HEA algorithms, the learning rate
α = 5 × 10−5 is constant. For deterministic HEA algo-
rithms, the learning rate is exponentially decreasing with
τ = 104 (time constant). For all HEA algorithms, P = 10
and P ′ = 1. For PBIL [2], α = 5 × 10−3, P = 10 and
P ′ = 1. For simulated annealing, we have chosen a geomet-
ric cooling. The rate of the inverse temperature β is 1.05
and β0 = log(0.6)/∆f , where ∆f is the average fitness func-
tion variation over 100 random fitness decreasing transitions.
The temperature is kept constant until 50 fitness decreasing
transitions have been accepted. For (stochastic) local search,

an approximate local maximum has been reached after 50
consecutive rejected moves. The algorithm is then randomly
restarted until the maximum number of function evaluations
has been reached. All stochastic algorithms have been run
20 times. The results are shown in Tab. 1. To sum up, with
the convention win-draw-lose across all 11 fitness functions,
the score of HEA with hpmax is 5-3-3 against PBIL, 4-2-5
against SA, and 9-0-2 against LS.

5. CONCLUSION
We have introduced HEA, a family of evolutionary algo-

rithms which use herding to sample the search space. HEA
shows promising results which need to be confirmed by ad-
ditional experiments. A better understanding of the learn-
ing rate control and the greedy approximation of herding is
required to improve the performances of HEA. Finally, we
suggest two potential research directions. One is to extend
HEA to continuous search spaces, as herding itself has al-
ready been [4]. Another one is to consider feature spaces
other than those of first and second moments.

6. REFERENCES
[1] F. Bach, S. Lacoste-Julien, and G. Obozinski. On the

equivalence between herding and conditional gradient
algorithms. In International Conference on Machine
Learning, 2012.

[2] S. Baluja and R. Caruana. Removing the genetics from
the standard genetic algorithm. In Proceedings of the
12th Annual Conference on Machine Learning, pages
38–46, 1995.

[3] S. Baluja and S. Davies. Using optimal
dependency-trees for combinatorial optimization:
learning the structure of the search space. Technical
Report CMU-CS-97-107, Carnegie-Mellon University,
January 1997.

[4] Y. Chen, M. Welling, and A. Smola. Super-samples
from kernel herding. In Uncertainty in Artificial
Intelligence, pages 109–116, 2010.

[5] M. Sebag and M. Schoenauer. A society of
hill-climbers. In Proc. IEEE Int. Conf. on Evolutionary
Computation, pages 319–324, Indianapolis, April 1997.

[6] M. Welling. Herding dynamic weights for partially
observed random field models. In Uncertainty in
Artificial Intelligence, pages 599–606, 2009.

[7] M. Welling. Herding dynamic weights to learn. In
International Conference on Machine Learning, pages
1121–1128, 2009.

1356




