
A Novelty Search-based Test Data Generator for
Object-oriented Programs

Mohamed Boussaa, Olivier Barais, Gerson Sunye and Benoit Baudry
INRIA Rennes, France

{mohamed.boussaa, olivier.barais, gerson.sunye, benoit.baudry}@inria.fr

ABSTRACT
In search-based structural testing, meta-heuristic search tech-
niques have been frequently used to automate test data
generation. In this paper, we introduce the use of novelty
search algorithm to the test data generation problem based
on statement-covered criterion. In this approach, we seek
to explore the search space by considering diversity as the
unique objective function to be optimized. In fact, instead
of having a fitness-based selection, we select test cases based
on a novelty score showing how different they are compared
to all other solutions evaluated so far.

Keywords
Search-based Software Testing, Structural Coverage, Auto-
mated Test Data Generation, Novelty Search, Genetic Al-
gorithm

1. INTRODUCTION
In general, manually creating test cases for testing soft-

ware systems is time consuming and error-prone. Thus,
the automation of this process becomes necessary. In fact,
meta-heuristic search techniques such as Genetic Algorithms
(GAs) are frequently used to automate the test data genera-
tion process and gather relevant test cases through the wide
search space [3, 1]. These techniques are especially applied
for structural white-box testing. For coverage-oriented ap-
proaches, applying Evolutionary Algorithms (EAs) to test
data generation [4] has been focused on finding input data
for a specific path of the program in accordance with a cov-
erage criterion (e.g., longest path executed). The problem
with coverage-oriented approaches is that search-based tech-
niques cannot exploit the huge space of possible test data.
In fact, some structures of the system may not be reached
since they are executed only by a small portion of the input
domain. The use of a fitness function as a coverage criterion
to guide the search to detect relevant test data usually create
one or more local optima to which the search may converge.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’15 July 11-15, 2015, Madrid, Spain
c© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3488-4/15/07.

DOI: http://dx.doi.org/10.1145/2739482.2764716

This process is known as diversity loss. Therefore, diver-
sity maintenance in the population level is key for avoiding
premature convergence. This issue is a common problem in
GAs and many techniques are proposed to escape from lo-
cal optima in multi-modal search space [2, 6]. However, all
these alternatives use a fitness-based selection to guide the
search.

In this paper, we propose the use of Novelty Search (NS)
algorithm [5] to the test data generation problem. In this
approach, we seek to explore the search space of possible test
input values by considering diversity as the unique objective
function to be optimized. In fact, instead of having a fitness-
based selection, we rather select test cases based on a novelty
score showing how different they are compared to all other
test data evaluated so far.

The paper is organized as follows: section 2 describes the
approach overview and our novelty search adaptation. Con-
cluding remarks and future work are provided in section 3.

2. NOVELTY SEARCH FOR TEST DATA
GENERATION

2.1 Approach Overview
Our test data generation framework aims to fully auto-

mate the test data generation process without requiring user
intervention. In fact, we have considered our System Under
Test (SUT) as a gray or semi transparent box in where the
internal structure is partially known. Thus, we can design
test cases through the exposed interfaces and conduct a code
coverage analysis from the general structure of our target
SUT. For example, within apache.commons.math library,
Methods Under Test (MUTs) are accessed through some
specific Java interfaces. Each interface belongs to a sub-
package of the whole library and exhibits a set of methods.
Our test data generation framework will rely on this con-
cept to generate automatically test cases. In fact, as shown
in Figure 1, starting from an input interface and a code
source package, the testing framework is able to: (1) gener-
ate automatically sequences of method invocation through
the input interface, (2) generate relative test data using NS,
(3) execute test cases on target Classes Under Test (CUTs)
and then (4) analyze code coverage within the source pack-
age. The process is iterated until a termination criterion is
met (e.g., number of iterations)

In our proposal, we use the same logic as GAs to imple-
ment the NS algorithm. However, we make some changes
and we add new settings to optimize the test data genera-
tion. In fact, instead of using a fitness function to evaluate

1359

Figure 1: Approach overview

generated test cases, we define a new measure of novelty to
maximize. We replace, as well, the fitness-based selection
(for fittest test cases) with a novelty-based one. This may
favor the diversity of generated test data. Finally, we add an
archive that acts as a memory of previously generated test
cases. This archive is used to calculate the novelty metric.
Otherwise, we keep the same settings as GAs, namely the
crossover and mutation operators.

For our NS adaptation, we have to define the number of
iterations N, the population size and the minimum coverage
value. This latter defines the threshold of covered state-
ments that should be reached. Test cases that exceed this
threshold are automatically added to the set of relevant test
cases. As well, we have to define a novelty threshold T that
defines the threshold for how novel a test suite has to be
before it is added to the archive. In addition, we define a
maximum size limit for the archive L and a k number that
will be used in calculating the novelty metric.

2.2 Novelty Metric
The Novelty metric expresses the sparseness of a test suite.

It measures its distance to all other test cases in the current
population and to all test cases that were discovered in the
past (i.e., test cases in the archive). This measure expresses
how unique the test suite is. We can quantify the sparse-
ness of a set of test cases as the average distance to the
k-nearest neighbors. The distance between two test suites
is computed as a Manhattan distance between the input pa-
rameter values of all methods tested in the test suite. A
candidate solution represents the set of methods signatures
declared in the interface. Thereby, we represent this solution
as a vector where each dimension has a method name, a list
of parameters types and a list of test data (the genotype)
Formally, we define this distance between two solutions as
follows :

distance(t1, t2) =

m∑
i=1

p∑
j=1

|t1(Mi, Pj)− t2(Mi, Pj)| (1)

where t1 et t2 are two selected test suites (solutions), m is
the number of methods composing the test suite, p is the
number of parameters composing a method. The couple
(Mi, Pj) returns the jth parameter value of the ith method
M relative to a test suite (t1 or t2). Since we are using

Java primitive types for test data such as floats, integers,
doubles, etc, it is easy to calculate this distance for numerical
parameters values. However, for string data types we use the
Levenshtein Algorithm1 to measure the strings distance.

To measure the sparseness of a test suite, we will use the
previously defined distance to compute the average distance
of a test suite to its k-nearest neighbors. In this context, we
define the novelty metric of a particular solution as follows:

NM(S) =
1

k

k∑
i=1

distance(S, µi) (2)

where µi is the ith nearest neighbor of the solution S within
the population and the archive of novel individuals. Fi-
nally, we have normalized the resulted novelty distance in
the range [0-100].

3. CONCLUSION AND FUTURE WORK
In this paper, we proposed a new adaptation of the NS

algorithm to test data generation problem. Using the NS
approach is clearly a divergent evolutionary technique, in-
spired by natural evolution’s drive to novelty that directly
rewards novel behaviors instead of progress towards a fixed
objective.

As a future work, we aim to conduct an empirical evalu-
ation of our NS approach by comparing it to fitness-based
and random approaches. In addition, we can optimize our
approach by adding diversity as an addition goal to a tra-
ditional objective driven approach to form a multi-objective
optimization problem. Finally, since we are testing gray-
box systems, we can apply this approach, as well, for black-
box testing. In this case, we will be able to measure some
non-functional properties such as memory usage and CPU
consumption.

4. REFERENCES
[1] S. Ali, L. C. Briand, H. Hemmati, and R. K.

Panesar-Walawege. A systematic review of the
application and empirical investigation of search-based
test case generation. Software Engineering, IEEE
Transactions on, 36(6):742–762, 2010.

[2] S. Das, S. Maity, B.-Y. Qu, and P. N. Suganthan.
Real-parameter evolutionary multimodal
optimizationâĂŤa survey of the state-of-the-art. Swarm
and Evolutionary Computation, 1(2):71–88, 2011.

[3] M. Harman and P. McMinn. A theoretical and
empirical study of search-based testing: Local, global,
and hybrid search. Software Engineering, IEEE
Transactions on, 36(2):226–247, 2010.

[4] K. Lakhotia, P. McMinn, and M. Harman. Automated
test data generation for coverage: Haven’t we solved
this problem yet? In Testing: Academic and Industrial
Conference-Practice and Research Techniques, 2009.
TAIC PART’09., pages 95–104. IEEE, 2009.

[5] J. Lehman and K. O. Stanley. Exploiting
open-endedness to solve problems through the search
for novelty. In ALIFE, pages 329–336, 2008.

[6] H. M. Pandey, A. Chaudhary, and D. Mehrotra. A
comparative review of approaches to prevent premature
convergence in ga. Applied Soft Computing,
24:1047–1077, 2014.

1http://www.levenshtein.net/

1360

