
A Comparison Exercise on Parallel Evaluation of
Rosenbrock Function

Miguel Cárdenas-Montes
CIEMAT

Department of Fundamental
Research

Avda. Complutense 40, 28040
Madrid, Spain

miguel.cardenas@ciemat.es

Miguel Angel
Vega-Rodríguez

University of Extremadura
ARCO Research Group
Dept. Technologies of

Computers and
Communications
Cáceres, Spain

mavega@unex.es

Juan José
Rodríguez-Vázquez

CIEMAT
Department of Fundamental

Research
Avda. Complutense 40, 28040

Madrid, Spain
jj.rodriguez@ciemat.es

Antonio Gómez-Iglesias
Texas Advanced Computing

Center
The University of Texas at

Austin
Austin, TX, USA

agomez@tacc.utexas.edu

ABSTRACT
GPU computing has spread its capacity over most of the
scientific computing areas. Soft computing is aware of the
potential of this computing architecture. In order to achieve
high performance, practitioners have to deal with the par-
ticularities associated with the porting of the problem to the
specifications of the GPU card; and specially with an effi-
cient management of the on-board and on-chip memories.
In this work, diverse optimized data layouts are analysed
when evaluating a large population of high-dimensional in-
dividuals for Rosenbrock function. As a consequence of this
study, a statement about the most favourable data layout
for this kind of evaluation is presented.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures;
C.4 [Performance of Systems]; I.2.5 [Artificial Intelli-
gence]: Programming Languages and Software; I.2.8 [Arti-
ficial Intelligence]: Problem Solving, Control Methods,
and Search

Keywords
Non-separable function; GPU performance; parallel evalua-
tion; Rosenbrock function

1. INTRODUCTION

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO’15 Companion, July 11–15, 2015, Madrid, Spain.
c© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3488-4/15/07.

DOI: http://dx.doi.org/10.1145/2739482.2764641

Due to the excellent ratio between capacity and cost, GPU
computing (graphics processing unit) has been become pop-
ular for supporting scientific computing in many areas. In
soft computing, GPU computing is being used for acceler-
ating algorithms optimizing complex problems. This is the
case when evaluating population-based evolutionary algo-
rithms with large population of high-dimensional individu-
als. Generally in these cases, the evaluation of the fitness is
the most time consuming, and therefore, the first target for
reducing the processing time.

Not only the dimensionality of individuals and the size
of the population increase the processing time, also some
characteristics of the function which is being optimized are
relevant. Concerning the artificial continuous functions, the
non-separable functions are considered more difficult to min-
imize than the separable ones. For this reason, in this work
a population of 5,000 individuals of 5,000 dimensions is used
to evaluate a well-known non-separable function: the Rosen-
brock function (Eq. 1).

fRosenbrock =

D−1∑
i=1

100 · [(x2
i − xi+1)2 + (xi − 1)2] (1)

In order to efficiently evaluate this kind of problems, par-
allel paradigms can be used to alleviate the large processing
time. When using GPU computing for this purpose, an ade-
quate management of the on-board and on-chip memories is
mandatory to achieve an efficient usage of the computational
resources.

Regarding parallel evolutionary algorithms, three main
models can be enunciated [1]. On the one hand, the model
used in the current work in which only the evaluation of the
population is executed in parallel, whereas the remaining
operators of the algorithm are sequentially executed. The

1361



two other models are island a/synchronous cooperation and
the distributed evaluation of a single solution.

In this work, an in-depth study about the most appro-
priate data layout for efficiently evaluating a non-separable
function on GPU for a large population of high-dimensional
individuals is proposed. Particularly, the study focuses on
the best profit of the on-board memory: coalesced access to
global memory; and the on-chip memory: registers, shared
memory, and L1 cache.

The strategies evaluated in this work are: S1 allocation
of one individual per thread on registers, AS3 allocation
of one individual per thread-block on share memory with
coalesced access to global memory and atomic operations,
and S4 allocation of one individual per thread on registers
with coalesced access to global memory.

All the numerical experiments have been executed with
floating point precision in an NVIDIA C2075 card (Fermi
architecture) with CUDA release 5.0 and compute capability
2.0.

2. RESULTS AND ANALYSIS
The analysis of the processing time (Table 1) for the re-

finements applied to the S1 (vectorization of the reads with
float2 and float4) results in a relevant reduction of the origi-
nal processing time when applying vectorization. As a result
of the vectorization with float4, the stride pattern access is
mitigated with the improvement of the use of the global
memory bandwidth.

Table 1: Execution time (ms) for GPU-based eval-
uation of the Rosenbrock function. Average times
and standard deviation after 25 executions per case.

Strategy Execution Time
S1 21.716 ± 0.048
S1 vectorized float2 21.738 ± 0.069
S1 vectorized float4 8.862 ± 0.024
AS3 57.530 ± 2.244
S4 6.921 ± 0.014
S4 vectorized float2 11.932 ± 0.015
S4 vectorized float4 22.946 ± 0.021
Sequential 51.698 ± 1.098

On the other hand, the modification on AS3 strategy sets
up the possibility to handle individuals larger than the max-
imum number of threads per block, but unfortunately by
introducing an elevated cost in processing time.

Considering the processing time of S4 with and without
vectorization, it is observed that the original S4 implemen-
tation is the most efficient implementation among all those
evaluated in this work. Since S4 has already a coalesced
access to global memory, the vectorization of this imple-
mentation penalizes its efficiency.

Regarding the L1 cache memory configuration, when re-
ducing the shared memory to 16 KB (Table 2) the processing
times are similar to the ones obtained with 48 KB of shared
memory. On the other hand, if the strategy has a simple
enough memory access pattern, then the explicit caching of
global memory in shared memory through L1 turn-off could
increment the performance. When turning off the L1 cache
memory (Table 3), some strategies improve but not enough
to outperform the most suitable strategy until now.

Table 2: Execution time (ms) for GPU-based eval-
uation of the Rosenbrock function with 16 KB of
shared memory configuration. Average times and
standard deviation after 25 executions per case.

Strategy Execution Time
S1 21.665 ± 0.040
S1 vectorized float2 21.698 ± 0.057
S1 vectorized float4 8.861 ± 0.022
AS3 52.689 ± 0.528
S4 6.93 ± 0.017
S4 vectorized float2 11.928 ± 0.015
S4 vectorized float4 22.937 ± 0.010

Table 3: Execution time (ms) for GPU-based eval-
uation of the Rosenbrock function with L1 cache
memory turned-off configuration. Average times
and standard deviation after 25 executions per case.

Strategy Execution Time
S1 14.216 ± 0.029
S1 vectorized float2 14.146 ± 0.021
S1 vectorized float4 12.903 ± 0.024
AS3 64.429 ± 1.174
S4 6.965 ± 0.051
S4 vectorized float2 11.935 ± 0.027
S4 vectorized float4 22.628 ± 0.030

As a conclusion of the Rosenbrock function analysis, it can
be stated that the S4 strategy provides the best performance
for evaluating it, 6.921 ± 0.014 ms.

3. CONCLUSIONS AND FUTURE WORK
In this work the most efficient data layouts for efficiently

evaluating large instances of Rosenbrock function on GPU
have been analysed. As example of large instances a pop-
ulation of 5,000 individuals of 5,000 dimensions has been
selected.

From the processing time point of view, it has been shown
that an incorrect choice of the data layout will penalize the
performance of the algorithm during the evaluation of the
population. The S4 strategy (allocation of one individual
per thread on registers with coalesced access to global mem-
ory) outperforms all the other strategies including the re-
finements checked in this work. The a priory knowledge of
the most suitable data layout will permit the design of more
efficient evolutionary algorithms.

4. ACKNOWLEDGMENTS
The research leading to these results has received funding

by the Spanish Ministry of Economy and Competitiveness
(MINECO) for funding support through the grant FPA2013-
47804-C2-1-R, together with the European Community’s Sev-
enth Framework Programme (FP7/2007-2013) via the project
EGI-InSPIRE under the grant agreement number RI-261323.

5. REFERENCES
[1] E. Alba and M. Tomassini. Parallelism and

evolutionary algorithms. IEEE Trans. Evolutionary
Computation, 6(5):443–462, 2002.

1362




