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ABSTRACT
Several real world problems have two levels of optimization
instead of a single one. These problems are said to be bi-
level and are so computationally expensive to solve since
the evaluation of each upper level solution requires find-
ing an optimal solution at the lower level. Most existing
works in this direction have focused on continuous prob-
lems. Motivated by this observation, we propose in this
paper an improved version of our recently proposed algo-
rithm CODBA (CO-evolutionary Decomposition-Based Al-
gorithm), called CODBA-II, to tackle bi-level combinatorial
problems. Differently to CODBA, CODBA-II incorporates
decomposition, parallelism, and co-evolution within both
levels: (1) the upper level and (2) the lower one, with the aim
to further cope with the high computational cost of the over-
all bi-level search process. The performance of CODBA-II is
assessed on a set of instances of the MDVRP (Multi-Depot
Vehicle Routing Problem) and is compared against three re-
cently proposed bi-level algorithms. The statistical analysis
of the obtained results shows the merits of CODBA-II from
effectiveness viewpoint.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Articial Intelligence—
Problem Solving, Control Method, and Search.
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Bi-level combinatorial optimization; co-evolution; decompo-
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1. INTRODUCTION
Bi-level optimization is a branch of optimization where we

find a nested optimization problem within the constraints of
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the outer one. In such kind of problems, we find a hierar-
chy between two optimization tasks. An interesting obser-
vation regarding the EBO (Evolutionary Bi-level Optimiza-
tion) literature consists in that most works have tackled the
continuous case. The number of EBO works for the discrete
case is greatly reduced. Recently, to cope with the expen-
sive cost of combinatorial BOPs, we have proposed CODBA
[2] which is a search algorithm that decomposes the lower
level population into a number of well-distributed popula-
tions that evolve in parallel while communicating between
each others by means of co-evolution such that the informa-
tion exchange is performed by means of recombination with
best lower level solutions. CODBA has demonstrated a good
performance on the bilevel MDVRP, which is a well-known
combinatorial BOP. Motivated by this observation, we pro-
pose in this paper an improved version of CODBA, called
CODBA-II which makes use of decomposition, parallelism,
and co-evolution at both levels. The goal of CODBA-II is
to further reduce the computational cost and to improve the
quality of both lower level solutions and upper level ones.

2. AN IMPROVED CO-EVOLUTIONARY D
ECOMPOSITION BASED ALGORITHM

In this paper, we decompose the lower and upper level
populations of CODBA-II into several well-distributed sub-
populations over the whole level search space. Each sub-
population could be seen as a cluster so that the clusters’
centroids are well-distributed to cover as possible the whole
search space. In this way, each sub-population is responsible
for a specific region. All sub-populations co-evolve in paral-
lel using several threads (one thread for each subpopulation).
For brevity, we focus mainly on the algorithm description at
the upper level. The algorithm details of the lower level is
kept the same as the upper one. Other part of the algorithm
like decomposition method is described in [2].

Step 1 (Initialization Scheme): We generate M1 well
distributed upper level sub-populations on the whole dis-
crete decision space. To do this, we use a recently proposed
DSDM method for discrete decision spaces that is described
in [2]. Thereafter, the lower level optimization problem is
executed to identify the optimal lower level solutions. In
fact, the upper level fitness is assigned based on both the
upper level function value and constraints.
Step 2 (Upper level parent selection): We choose SPS1
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Table 1: Average upper-level fitness value, Direct rationality value and Weighted rationality value obtained
by CODBA-II, CODBA, COBRA and a reparing method for Bi-MDVRP intances. The symbol “+” means
that H0is rejected while the symbole “-” means the opposite. The best values are highlighted in bold.

Upper level fitness Lower level

Direct rationality Weighted rationality

instances CODBA-II CODBA COBRA Repair CODBA-II CODBA COBRA Repair CODBA-II CODBA COBRA Repair

birp01 1794(- -+) 1821(++) 1890(-) 1869 0.8(+++) 1.7(++) 0.7(+) 5.2 11.9(+++) 18.6(++) 11.7(+) 3256.2

birp02 3178(+++) 3928(++) 4879(+) 3526 0.9 (+++) 2.1(++) 1.3(+) 4.6 129.2(+++) 139.2(++) 131.8(+) 4377.5

birp03 4245(+++) 4157(++) 8694(+) 4083 2.7(+-+) 3.3(-+) 2.8(+) 19.7 280.3(+-+) 310.3(-+) 284.6(+) 5183.1

birp04 5838(+++) 6820(++) 11234(+) 7355 0.9(+-+) 4.6(++) 1.2(+) 22.3 190.6(+-+) 265.7(++) 194.1(+) 5155.3

birp05 6211(-++) 6853(+-) 12142(+) 7991 0.9 (+++) 1.2(++) 0.8(+) 5.9 62.1(+++) 85.9(++) 60.8(+) 3291.8

birp06 9582(-++) 9612(+-) 16102(+) 10542 1.1(+++) 2.4(++) 0.9(+) 6.1 97.2(+++) 96.1(++) 70.2(+) 2413.7

birp07 1494(+++) 2171(++) 2988(+) 2651 2.9(+++) 2.1 (++) 3.3(+) 1.9 93.4(+++) 95.2(++) 98.8(+) 85.1

birp08 3229(+++) 4967(++) 8211(+) 6221 3.4(+++) 4.8(++) 3.7(+) 26.1 208.3(+++) 216.7(++) 209.9(+) 221.9

birp09 4637(-++) 5258(++) 13652(+) 7897 3.8(+-+) 9.3(++) 4.0(+) 28.3 199.7(+-+) 205.9(++) 195.2(+) 222.1

birp10 9219(+++) 11240(+-) 18657(+) 11502 0.95(+-+) 0.85(++) 0.9(+) 15.7 75.5(+-+) 78.4(++) 71.3(+) 118.2

population members from each upper level parent subpopu-
lation using tournament selection where SPS1 is the upper
SubPopulation Size.
Step 3 (Variation at the upper level): Perform the
crossover and mutation operations in order to create an off-
spring sub-population for each upper parent sub-population.
We note that these operators are performed in parallel for
the different upper sub-populations.
Step 4 (Lower level optimization): Solve the lower level
optimization problem for each offspring.
Step 5 (Offspring evaluation): Combine each upper par-
ent sub-population with its corresponding upper offspring
population and evaluate them using the upper level objec-
tive function and constraints.
Step 6: (Environmental selection): Fill each new up-
per level sub-population using a replacement strategy. In
fact, each new upper level sub-population is formed with
the SPS1 best solutions of the combined one. If the stop-
ping criterion is met then store the best found upper level
solution in the archive; otherwise, return to Step 2.
Step 7 (Co-evolution): Each sub-population member is
crossed-over with one of the best archive members of the
other sub-populations. In this way, we obtain an offspring
population for each sub-population. Thereafter, we com-
bine each sub-population with its corresponding offspring
population and we update the sub-population by selecting
the best SPS1 ones. This process is repeated until the
best lower level fitness function value is no more improved
for a K generations or MaxGenCoEvol is attained where
MaxGenCoEvol is the Maximum allowed number of Gen-
erations for Co-Evolution. Once the co-evolution is termi-
nated, we return the global optimum to the upper level to
evaluate upper level solutions.

3. RESULTS AND DISSCUSSION
Our experiments are divided into two parts. The first one

is devoted to compare CODBA-II against three bi-level algo-
rithms: (1) CODBA [2], (2) COBRA [3], and (3) Repairing
method. The second one is dedicated to CPU time analysis
to assess the efficiency of our CODBA-II from a computa-
tional time viewpoint. The different EAs were tested on the
bi-MDVRP and the generated results are evaluated using
three metrics: (1) Upper level fitness, (2) Direct rationality
and (2) Weighted rationality [3]. As well, the performance

comparison was carried out using the Wilcoxon statistical
test. Therefore, thirty runs are perfomed for each couple
(algorithm, problem). We observe from the Table 1 that
CODBA-II seems competitive when compared to the con-
temporary approaches. In fact, it generates the better upper
level fitness value regarding to the original CODBA, CO-
BRA and the repairing approach. This result is explained
by the fact that CODBA-II is based on the DSDM decompo-
sition method [2] which can generate a well-diversified sub-
populations that cover the whole decision space. Moreover,
the co-evolution between those sub-populations can main-
tain a global view on the whole problem and can exploit
the search capacity of each cluster. Regarding to the lower
level solutions, we observe from Table 1 that CODBA-II
improves the lower reactions regarding to CODBA in all
instances. As well, the proposed scheme was able to out-
perform the repairing approach and COBRA algorithm in
several instances. According to the CPU time comparision,
we compute the consumed CPU Time in minutes for EAs
on bi-pr01, bipr02 and bi-pr03 instances,we observe from the
results that our CODBA-II consumes less CPU times than
its competitors. In this regards, we can properly conclude
that our proposed hierarchical CODBA-II is more adapted
to the bi-level aspect of the problem.

4. CONCLUSION
In this paper, we have suggested an improved co-evolution

ary algorithm for bilevel optimization to tackle bi-level com-
binatorial problems. The statistical analysis of the obtained
results shows the merits of CODBA-II from effectiveness
viewpoint.Therefore, it is interesting to design a multi-objec-
tive version of CODBA-II to solve the multi-objective bi-
level optimization problem.
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