
Dynamically Adding Sensors to the XCS in Multistep
Problems: A Sensor Tagging Approach

Liang-Yu Chen
Institute of Biomedical Engineering,

National Chiao Tung University, 1001
University Road, Hsinchu 300,

Taiwan, R.O.C..

lychen1211@cs.nctu.edu.tw

Po-Ming Lee
Institute of Computer Science and

Engineering, Department of Computer
Science, National Chiao Tung

University, 1001 University Road,
Hsinchu 300, Taiwan, R.O.C..

pmli@cs.nctu.edu.tw

Tzu-Chien Hsiao
Biomedical Electronics Translational

Research Center and Biomimetic
Systems Research Center, Institute of
Biomedical Engineering, Department
of Computer Science, National Chiao

Tung University, 1001 University
Road, Hsinchu 300, Taiwan, R.O.C..

labview@cs.nctu.edu.tw

ABSTRACT
Dynamically adding sensors to the Extended Classifier System
(XCS) during its learning process in multistep problems has been
demonstrated feasible by using messy coding (XCSm) and s-
expressions (XCSL) as the representation of classifier conditions.
XCSm and XCSL shown improved performance when new
sensors were dynamically added to the agent of these systems in
addition to the original available sensors during the learning
process. However, these systems may suffer from overspecified
problem and some logical operators (or clauses) could lead
instability of the performance. Despite studies have suggested that
these issues can be solved by appropriate parameter tuning, in our
previous finding, we introduced a novel representation of
classifier conditions for the XCS, named Sensory Tag (ST)
(called XCS with ST condition, XCSSTC) to achieve the same
goal as XCSm and XCSL but inherent most of the mechanisms of
the XCS to solve those issues that the XCSm and XCSL
encountered without any parameter tuning. The experiments of
the proposed method were conducted in the multistep problems
(i.e. Woods1 and Maze4). The results indicate that the XCSSTC
is capable of being dynamic added additional sensors to improve
performance during the learning process, and moreover, the
XCSSTC shown a better performance in regard to learning speed
than the other methods.

Categories and Subject Descriptors
F.1.1 [Models of Computation]: Genetics-Based Machine
Learning, Learning Classifier Sysytems

Keywords
Learning Classifier Systems; XCS, Scalability; Machine Learning

1. INTRODUCTION
Learning classifier system (LCS) has become one of the research
mainstreams in the field of intelligent system. Various LCSs have
been proposed, the Extended Classifier System (XCS) is one of

the most popular ones in the application domain. Dynamically
adding sensors to the XCS during its learning process in multistep
problems has been demonstrated feasible by using messy coding
(XCSm) and s-expressions (XCSL) as the representation of
classifier conditions [1-2]. However, the XCSm and XCSL are
slower than the ordinary XCS, and moreover, the XCSm may
suffer from overspecified problem, and furthermore, some logical
operators (or clauses) could cause instability in XCSL’s
performance. We proposed an XCS with ST condition called
XCSSTC to achieve the same goal as the XCSm and XCSL with a
better performance in regard to learning speed, and without
having those issues which XCSm and XCSL encountered [3], Its
effectiveness has been verified in the Multiplexer (MUX) problem
domain [4] and it can dynamically learn multiple problems[5].
The results indicate that the proposed XCSSTC method can learn
the 135-bit MUX problem and proved the superiority of the XCS
with code-fragment conditions (XCSCFC) in reusing building
blocks of knowledge [6]. This paper validated that the
performance of the XCSSTC in the multistep problem domains
(i.e. Woods1 and Maze4).

2. THE METHOD AND MATERIALS
2.1 ST as the Representation of Classifier
Conditions in Multistep Problems
The method we proposed here is to use the HT to implement the
concept of STs as the representation of classifier conditions. In
the proposed XCSSTC, the ST of a sensor is taken as a key
whereas its Sensory Value (SV) is taken as the value corresponds
to the key. Each classifier has its own HT as the representation of
classifier conditions. The HT includes all the (ST, SV) data pairs.
The condition bit which is # in a classifier of an ordinary XCS is
simply ignored from the HT for the classifiers in the XCSSTC.

2.1.1 Matching Classifiers in the XCSSTC
In the XCSSTC, a matching process decides whether a classifier
is matched by enumerating all the SVs in the HT of the cl. The
procedure of the XCSSTC to match a classifier cl is to compared
to the corresponding bit position (by using the ST) in the input
string and the absent (ST, SV) pairs are considered as “don’t care”
and hence ignored.

2.1.2 Covering in the XCSSTC
In the covering process of the XCSSTC, a random classifier
whose condition matches the current environmental state s and
each (ST, SV) pair in the HT has probability P# to be taken as
“don’t care”.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
Owner/Author. Copyright is held by the owner/author(s).
GECCO'15 Companion, July 11-15, 2015, Madrid, Spain
ACM 978-1-4503-3488-4/15/07.
http://dx.doi.org/10.1145/2739482.2764680

1367

2.1.3 Rule Discovery in the XCSSTC
First selects two parent classifiers from the [A] based on their
fitness and produces two offspring by the parents. Then the
conditions of two offspring are crossed with probability .
Uniform Crossover (UX) is used for the GA in the XCSSTC.
After the crossover operation, each (ST, SV) pair has a
probability  to be removed in the mutation operation. The absent
STs are considered as “don’t care” attributes. Then, with
probability , the XCSSTC randomly chooses an action for child.

2.1.4 Subsumption Deletion in the XCSSTC
In the XCSSTC, there are two steps to determine which classifier
rule is more general than the other classifier rule that can subsume
the other. The first step is to count the number of the (ST, SV)
pairs in the HT. The number of the absent STs is equivalent to the
number of “don’t care” bit. This action determines whether the
classifier is general or not efficiently. The second step is to
compare the SVs of the classifiers corresponds to their STs. If cl1
has a ST that cl2 does not have, then cl2 cannot subsumed into cl1.

2.1.5 Encapsulating and Reusing the Learned
Knowledge When Adding New Sensors to the XCSSTC
The agent learn from the environment with only four sensors and
the learned population set was taken as the [P]-1. Later, when
adding the additional new four sensors to the XCSSTC, the
covering process of the XCSSTC is then altered to a two-step
procedure. The first step is to use the ordinary matching process
to match the classifier rules in the [P]-1 and pick out an
experienced classifier (exp > θsub) which has the highest fitness
value. The second step is to apply the covering operation for the
additional new STs for the classifier selected from the [P]-1. For a
probability of P# the new (ST, SV) is not inserted into the
classifier’s HT. On the other hand, if there is no classifier matches
the environmental input in the [P]-1, the XCSSTC applies the
ordinary covering operation to create a new classifier.

2.2 Experiment Design
The environment of multistep problems is a grid in which an
agent is placed in the grid to find a food. The agent has a number
of sensors to perceive the adjacent situation of corresponding cell
in the environment. Each cell in the grid can be an obstacle (“O”
with sensor codes 01), a food (“F” with sensor codes 01), or it can
be empty (“*” with sensor codes 00). The agent can move into
any of adjacent cell. If the adjacent cell is an obstacle, the agent
unable to move into this cell and left in the original place; if the
adjacent cell is empty then the agent can move into the cell;
finally, if the adjacent cell is a food, the agent will move into the
cell and receive a constant reward to end the problem. The
experimental environments used here are Woods1 and Maze4.
The experiment of the XCSSTC on each experiment was repeated
for 30 times with a different random seed and all the reports are
average result of the 30 runs.

3. RESULT
Figure 1 and Figure 2 show the effect of XCSSTC in Woods1 and
Maze4. XCSSTC with reusing the [P]-1 (241.66±141.47) is not
significantly (t(58) = 8.146, p > .05) faster than XCSSTC without
reusing the [P]-1 (603.33±192.75) in Woods1 problem. XCSSTC
with reusing the [P]-1 (433.33±200.55) is significantly (t(58) =
6.230, p < .05) faster than XCSSTC without reusing the [P]-1

(1108.33±547.88) in Maze4 problem.

Figure 1 Result of XCSSTC by reusing the four cardinal
sensors without overgeneral classifier for Woods1 problem.

Figure 2 Result of XCSSTC by reusing the four cardinal
sensors without overgeneral classifier for Maze4 problem

4. ACKNOWLEDGMENTS
This work was fully supported by Taiwan Ministry of Science and
Technology under grant numbers MOST 103-2221-E-009-139.
This work was also supported in part by the "Aim for the Top
University Plan" of the National Chiao Tung University and
Ministry of Education, Taiwan, R.O.C..

5. REFERENCES
[1] Lanzi, P. L. 1999. Extending the representation of classifier

conditions part i: from binary to messy coding. In
Proceedings of the genetic and evolutionary computation
conference. 1, 337-344.

[2] Lanzi, P. L. and Perrucci, A. 1999. Extending the
Representation of Classifier Conditions Part II: from messy
coding to S-Expressions. In Proceedings of the Proceedings
of the genetic and evolutionary computation conference. 1,
345-352.

[3] Chen, L.-Y., Lee, P.-M., Hsiao, T.-C. 2015. A Novel
Representation of Classifier Conditions named sensory tag
for the XCS in multistep problems. In Proceedings of the
The Genetic and Evolutionary Computation Conference.

[3] Chen, L.-Y., Lee, P.-M., Hsiao, T.-C. 2015. A Sensor Tagging
Approach For Reusing Building Blocks of Knowledge. In
Learning Classifier Systems. IEEE Congress on
Evolutionary Computation.

[5] Wu, Y.-M., Chen, L.-Y., Lee, P.-M., Hsiao, T.-C. 2015.
Enable the XCS to Dynamically Learn Multiple Problems: A
Sensor Tagging Approach. In Proceedings of the The
Genetic and Evolutionary Computation Conference.

[6] Iqbal, M., Browne, W. N. and Zhang, M. 2012. Extracting
and using building blocks of knowledge in learning classifier
systems. In Proceedings of the Proceedings of the fourteenth
international conference on Genetic and evolutionary
computation conference. 863-870.

1368

