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ABSTRACT 
Dynamically adding sensors to the Extended Classifier System 
(XCS) during its learning process in multistep problems has been 
demonstrated feasible by using messy coding (XCSm) and s-
expressions (XCSL) as the representation of classifier conditions. 
XCSm and XCSL shown improved performance when new 
sensors were dynamically added to the agent of these systems in 
addition to the original available sensors during the learning 
process. However, these systems may suffer from overspecified 
problem and some logical operators (or clauses) could lead 
instability of the performance. Despite studies have suggested that 
these issues can be solved by appropriate parameter tuning, in our 
previous finding, we introduced a novel representation of 
classifier conditions for the XCS, named Sensory Tag (ST) 
(called XCS with ST condition, XCSSTC) to achieve the same 
goal as XCSm and XCSL but inherent most of the mechanisms of 
the XCS to solve those issues that the XCSm and XCSL 
encountered without any parameter tuning. The experiments of 
the proposed method were conducted in the multistep problems 
(i.e. Woods1 and Maze4). The results indicate that the XCSSTC 
is capable of being dynamic added additional sensors to improve 
performance during the learning process, and moreover, the 
XCSSTC shown a better performance in regard to learning speed 
than the other methods. 

Categories and Subject Descriptors 
F.1.1 [Models of Computation]: Genetics-Based Machine 
Learning, Learning Classifier Sysytems 
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1. INTRODUCTION 
Learning classifier system (LCS) has become one of the research 
mainstreams in the field of intelligent system. Various LCSs have 
been proposed, the Extended Classifier System (XCS) is one of 

the most popular ones in the application domain. Dynamically 
adding sensors to the XCS during its learning process in multistep 
problems has been demonstrated feasible by using messy coding 
(XCSm) and s-expressions (XCSL) as the representation of 
classifier conditions [1-2]. However, the XCSm and XCSL are 
slower than the ordinary XCS, and moreover, the XCSm may 
suffer from overspecified problem, and furthermore, some logical 
operators (or clauses) could cause instability in XCSL’s 
performance. We proposed an XCS with ST condition called 
XCSSTC to achieve the same goal as the XCSm and XCSL with a 
better performance in regard to learning speed, and without 
having those issues which XCSm and XCSL encountered [3], Its 
effectiveness has been verified in the Multiplexer (MUX) problem 
domain [4] and it can dynamically learn multiple problems[5]. 
The results indicate that the proposed XCSSTC method can learn 
the 135-bit MUX problem and proved the superiority of the XCS 
with code-fragment conditions (XCSCFC) in reusing building 
blocks of knowledge [6]. This paper validated that the 
performance of the XCSSTC in the multistep problem domains 
(i.e. Woods1 and Maze4). 

2. THE METHOD AND MATERIALS 
2.1 ST as the Representation of Classifier 
Conditions in Multistep Problems 
The method we proposed here is to use the HT to implement the 
concept of STs as the representation of classifier conditions. In 
the proposed XCSSTC, the ST of a sensor is taken as a key 
whereas its Sensory Value (SV) is taken as the value corresponds 
to the key.  Each classifier has its own HT as the representation of 
classifier conditions. The HT includes all the (ST, SV) data pairs. 
The condition bit which is # in a classifier of an ordinary XCS is 
simply ignored from the HT for the classifiers in the XCSSTC.  

2.1.1 Matching Classifiers in the XCSSTC 
In the XCSSTC, a matching process decides whether a classifier 
is matched by enumerating all the SVs in the HT of the cl. The 
procedure of the XCSSTC to match a classifier cl  is to compared 
to the corresponding bit position (by using the ST) in the input 
string and the absent (ST, SV) pairs are considered as “don’t care” 
and hence ignored. 

2.1.2 Covering in the XCSSTC 
In the covering process of the XCSSTC, a random classifier 
whose condition matches the current environmental state s and 
each (ST, SV) pair in the HT has probability P# to be taken as 
“don’t care”. 
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2.1.3 Rule Discovery in the XCSSTC 
First selects two parent classifiers from the [A] based on their 
fitness and produces two offspring by the parents. Then the 
conditions of two offspring are crossed with probability . 
Uniform Crossover (UX) is used for the GA in the XCSSTC. 
After the crossover operation, each (ST, SV) pair has a 
probability  to be removed in the mutation operation. The absent 
STs are considered as “don’t care” attributes. Then, with 
probability , the XCSSTC randomly chooses an action for child. 

2.1.4 Subsumption Deletion in the XCSSTC 
In the XCSSTC, there are two steps to determine which classifier 
rule is more general than the other classifier rule that can subsume 
the other. The first step is to count the number of the (ST, SV) 
pairs in the HT. The number of the absent STs is equivalent to the 
number of “don’t care” bit. This action determines whether the 
classifier is general or not efficiently. The second step is to 
compare the SVs of the classifiers corresponds to their STs. If cl1 
has a ST that cl2 does not have, then cl2 cannot subsumed into cl1. 

2.1.5 Encapsulating and Reusing the Learned 
Knowledge When Adding New Sensors to the XCSSTC 
The agent learn from the environment with only four sensors and 
the learned population set was taken as the [P]-1.  Later, when 
adding the additional new four sensors to the XCSSTC, the 
covering process of the XCSSTC is then altered to a two-step 
procedure. The first step is to use the ordinary matching process 
to match the classifier rules in the [P]-1 and pick out an 
experienced classifier (exp > θsub) which has the highest fitness 
value. The second step is to apply the covering operation for the 
additional new STs for the classifier selected from the [P]-1. For a 
probability of P# the new (ST, SV) is not inserted into the 
classifier’s HT. On the other hand, if there is no classifier matches 
the environmental input in the [P]-1, the XCSSTC applies the 
ordinary covering operation to create a new classifier. 

2.2 Experiment Design 
The environment of multistep problems is a grid in which an 
agent is placed in the grid to find a food. The agent has a number 
of sensors to perceive the adjacent situation of corresponding cell 
in the environment. Each cell in the grid can be an obstacle (“O” 
with sensor codes 01), a food (“F” with sensor codes 01), or it can 
be empty (“*” with sensor codes 00). The agent can move into 
any of adjacent cell. If the adjacent cell is an obstacle, the agent 
unable to move into this cell and left in the original place; if the 
adjacent cell is empty then the agent can move into the cell; 
finally, if the adjacent cell is a food, the agent will move into the 
cell and receive a constant reward to end the problem. The 
experimental environments used here are Woods1 and Maze4.  
The experiment of the XCSSTC on each experiment was repeated 
for 30 times with a different random seed and all the reports are 
average result of the 30 runs. 

3. RESULT  
Figure 1 and Figure 2 show the effect of XCSSTC in Woods1 and 
Maze4. XCSSTC with reusing the [P]-1 (241.66±141.47) is not 
significantly (t(58) = 8.146, p > .05) faster than XCSSTC without 
reusing the [P]-1 (603.33±192.75) in Woods1 problem. XCSSTC 
with reusing the [P]-1 (433.33±200.55) is significantly (t(58) = 
6.230, p < .05) faster than XCSSTC without reusing the [P]-1 

(1108.33±547.88) in Maze4 problem.  

 

Figure 1 Result of XCSSTC by reusing the four cardinal 
sensors without overgeneral classifier for Woods1 problem. 

 

Figure 2 Result of XCSSTC by reusing the four cardinal 
sensors without overgeneral classifier for Maze4 problem 
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