
On the Automatic Generation of Efficient Parallel Iterative
Sorting Algorithms

Gopinath Chennupati
BDS Group

CSIS Department
University of Limerick, Ireland
gopinath.chennupati@ul.ie

R. Muhammad Atif Azad
BDS Group

CSIS Department
University of Limerick, Ireland

atif.azad@ul.ie

Conor Ryan
BDS Group

CSIS Department
University of Limerick, Ireland

conor.ryan@ul.ie

ABSTRACT

Increasing availability of multiple processing elements on the
recent desktop and personal computers poses unavoidable
challenges in realizing their processing power. The chal-
lenges include programming these high processing elements.
Parallel programming is an apt solution for such a realiza-
tion of the computational capacity. However, it has many
difficulties in developing the parallel programs.

We present Multi-core Grammatical Evolution for Paral-
lel Sorting (MCGE-PS) that automatically produces native
parallel sorting programs. These programs are of iterative
nature that also exploit the processing power of the multi-
core processors efficiently. The performance of the resultant
programs is measured in terms of the execution time. The
results indicate a significant improvement over the state-of-
the-art implementations. Finally, we conduct an empirical
analysis on computational complexity of the evolving paral-
lel programs. The results are competitive with that of the
state-of-the-art evolutionary attempts.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search - Heuristic methods

Keywords

Grammatical Evolution; Multi-cores; Program Synthesis; Per-
formance Optimization; OpenMP; Sorting.

1. INTRODUCTION
With an increase in the number of cores on a single chip,

programming them becomes hard for an average program-
mer. That being the fact, with the death of scaling1, they
need to be explicitly programmed in exploiting their true
potential. Programming them requires human expertise in
producing efficiently executing programs.

1http://www.gotw.ca/publications/concurrency-ddj.htm

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’15 Companion, July 11-15, 2015, Madrid, Spain

© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3488-4/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739482.2764695

While parallel programming can be challenging for a hu-
man programmer considering the associated objectives such
as optimising the degree of parallelism and porting code
across different parallel architectures, automatically gener-
ating parallel programs is even tougher especially when pro-
ducing a program from scratch. However, given the preva-
lent parallel hardware, automatic parallel programming can
significantly advance the state of the art towards achieving
the dream that is automatic programming of computers.

Evolutionary Computation offers an easy solution for this
problem, still, generating parallel programs is hard with the
existing domain knowledge. Attempts for automatic paral-
lelization were initiated with Paragen-I [7, Chapter-5], which
mapped the serial programs onto multiprocessors. Then,
Ryan and Ivan [8] merged independent tasks of different
loops into a single loop.

Figure 1: An overview of the Multi-Core Grammat-
ical Evolution for the automatic evolution of parallel
programs. The evolutionary cycle of the approach
follows that of GE, except for the changes in the
BNF grammar and fitness evaluation.

1369

http://dx.doi.org/10.1145/2739482.2764695

Recently, [1] generated parallel regression programs us-
ing Grammatical Evolution (GE) [5] and OpenMP [6], au-
tomatically. Then, [3] further scrutinized the efficiency of
the evolved regression programs. To that end, this paper
presents the evolution of parallel iterative sorting by enhanc-
ing the state-of-the-art implementations.

2. PROPOSED APPROACH
We enhance Multi-Core Grammatical Evolution for Paral-

lel Sorting (MCGE-PS) [2] that automatically generates ef-
ficient parallel iterative sorting programs. The proposed ap-
proach follows a similar single program multiple data (SPMD)
parallelization strategy as that of MCGE-PS. Figure 1 shows
an overview for the evolutionary cycle of the proposed ap-
proach in generating the optimal parallel sorting programs.
However, it differs significantly in the design of the grammar
as well as the fitness evaluation. The grammars offer a clear
separation between the task and data parallelism, while the
fitness evaluation considers the execution time.

3. EXPERIMENTS
The proposed enhancements are evaluated on four stan-

dard benchmark iterative sorting programs (bubble sort,
quick sort, odd-even sort, rank sort). The experiments use
the default parameter setting of GE. Mostly, literature con-
centrated mainly on the evolution of sequential sorts [4] of
quadratic complexity with the use of swap primitive.

Bubble sort Quick sort Odd-Even sort Rank sort
Problem

0

2

4

6

8

10

12

14

16

Sp
ee

d
up

MCGE−PS
1
2

4
8

16

Figure 2: Scale up (in terms of execution time) of
MCGE-PS generated parallel sorting programs for
all the four experimental problems. The results are
for different cores (2, 4, 8, and 16) with reference to
uni-core (horizontal dashed line) results.

We measure the performance of the MCGE-PS resulting
parallel iterative sorts as speed up in terms of their execu-
tion time over the specified number of cores. The programs
are executed on 2, 4, 8 and 16 cores of an Intel processor.
Figure 2 shows the performance of the four experimental
problems on different cores that showed better results.

These programs are also compared with the sequential
programs that are generated with GE. The results indicate a

significant performance over the sequential programs. How-
ever, the results are insignificant for 2 cores due to the thread
scheduling and code growth issues discussed in [3]. On an
average, the proposed enhancements reports a speed up of
11.56 on 16 cores. Finally, we observe the computational
complexity of the best resultant programs. Their complex-
ity results are competitive with that of the state of the art
implementations with a reported complexity of O

(

n2
)

for

bubble sort, O
(

nlog(n)
)

for quick sort.

4. CONCLUSION
We presented an enhanced implementation of MCGE-PS

that offers greater flexibility with the changes to the design
of the grammars as well as the fitness evaluation. The en-
hancements resulted in the automatic evolution of efficient
parallel iterative sorts with significantly better scale up re-
sults over the state-of-the-art implementations.

The improvements in the performance are then proved
with the help of an empirical analysis on the computational
complexity. However, future work seems promising, expand-
ing its applications into many directions. Foremost of which,
we apply our approach to problems such as Lock-less pro-
gramming, where shared resources are manipulated by mul-
tiple threads without the need for locks.

5. REFERENCES
[1] G. Chennupati, R. M. A. Azad, and C. Ryan.

Multi-core GE: automatic evolution of CPU based
multi-core parallel programs. In Proceedings of the
Genetic and Evolutionary Computation Conference
Companion, pages 1041–1044. ACM, 2014.

[2] G. Chennupati, R. M. A. Azad, and C. Ryan.
Automatic evolution of parallel sorting programs on
multi-cores. In A. M. Mora and G. Squillero, editors,
EvoApplications 2015, volume 9028 of LNCS, pages
706–717. Springer, Heidelberg, 2015.

[3] G. Chennupati, J. Fitzgerald, and C. Ryan. On the
efficiency of multi-core grammatical evolution (mcge)
evolving multi-core parallel programs. In Proceedings of
the Sixth World Congress on Nature and Biologically
Inspired Computing (NaBIC), pages 238–243. IEEE,
2014.

[4] K. E. Kinnear Jr. Evolving a sort: Lessons in genetic
programming. In IEEE International Conference on
Neural Networks, pages 881–888. IEEE, 1993.

[5] M. O’Neill and C. Ryan. Grammatical Evolution:
Evolutionary Automatic Programming in an Arbitrary
Language. Kluwer Academic Publishers, Norwell, MA,
USA, 2003.

[6] OpenMP Architecture Review Board. OpenMP
application program interface version 3.0.
http://www.openmp.org/mp-documents/spec30.pdf,
May 2008.

[7] C. Ryan. Automatic Re-engineering of Software Using
Genetic Programming, volume 2 of Genetic
Programming. Springer, 1999.

[8] C. Ryan and L. Ivan. Automatic parallelization of
arbitrary programs. In R. Poli et. al., editor, EuroGP
1999, volume 1598 of LNCS, pages 244–254. Springer,
Heidelberg, 1999.

1370

	Introduction
	Proposed Approach
	Experiments
	Conclusion
	References

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20150508120224
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Left
 7.2000
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 2
 1
 2

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20150508120224
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Down
 23.8320
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 2
 1
 2

 1

 HistoryList_V1
 qi2base

