Evolving Neural Networks

Risto Miikkulainen

Department of Computer Science The University of Texas at Austin risto@cs.utexas.edu

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full clation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author. Copyright is held by the owner/author(s). GECCO'15 Companion, July 11-15, 2015, Madrid, Spain ACM 978-1-4503-3488-4/15/07. http://dx.doi.org/10.1145/2739482.2756577

Why Neuroevolution?

- Neural nets powerful in many statistical domains
 - E.g. control, pattern recognition, prediction, decision making
 - Where no good theory of the domain exists
- Good supervised training algorithms exist
 - Learn a nonlinear function that matches the examples
- What if correct outputs are not known?

Sequential Decision Tasks

- ► POMDP: Sequence of decisions creates a sequence of states
- No targets: Performance evaluated after several decisions
- Many important real-world domains:
 - Robot/vehicle/traffic control
 - Computer/manufacturing/process optimization
 - Game playing

Forming Decision Strategies

- Traditionally designed by hand
 - Too complex: Hard to anticipate all scenarios
 - Too inflexible: Cannot adapt on-line
- Need to discover through exploration
 - Based on sparse reinforcement
 - Associate actions with outcomes

- ► AHC, Q-learning, Temporal Differences
 - · Generate targets through prediction errors
 - Learn when successive predictions differ
- Predictions represented as a value function
 - Values of alternatives at each state
- Difficult with large/continuous state and action spaces
- Difficult with hidden states

Neuroevolution (NE) Reinforcement Learning

- ► NE = constructing neural networks with evolutionary algorithms
- Direct nonlinear mapping from sensors to actions
- Large/continuous states and actions easy
 - Generalization in neural networks
- Hidden states disambiguated through memory
 - ► Recurrency in neural networks⁹⁵
 - Deep Reinforcement Learning⁷⁵

How well does it work?

Poles	Method	Evals	Succ.
One	VAPS	(500,000)	0%
	SARSA	13,562	59%
	Q-MLP	11,331	
	NE	127	
Two	NE	3,416	

- Difficult RL benchmark: Non-Markov Pole Balancing
- NE 3 orders of magnitude faster than standard RL²⁹
- NE can solve harder problems

Role of Neuroevolution

- Powerful method for sequential decision tasks^{17,29,58,111}
 - Optimizing existing tasks
 - Discovering novel solutions
 - Making new applications possible
- ► Also may be useful in supervised tasks^{54,65}
 - Especially when network topology important
- ► A unique model of biological adaptation/development ^{60,73,106}

Neuroevolution Decision Strategies

- Basic neuroevolution techniques
- Advanced techniques
 - E.g. combining learning and evolution; novelty search
- Extensions to applications
- Application examples
 - ► Control, Robotics, Artificial Life, Games

- Input variables describe the state observed through sensors
- Output variables describe actions
- Network between input and output:
 - Nonlinear hidden nodes
 - Weighted connections
- Execution:
 - Numerical activation of input
 - Performs a nonlinear mapping
 - Memory in recurrent connections (POMDP!)

Conventional Neuroevolution (CNE) I

- ► Evolving connection weights in a population of networks ^{54,74,111,112}
- Chromosomes are strings of connection weights (bits or real)
 - ► E.g. 10010110101100101111001
 - Usually fully connected, fixed topology
 - Initially random

Conventional Neuroevolution II

- Parallel search for a solution network
 - Each NN evaluated in the task
 - Good NN reproduce through crossover, mutation
 - Bad thrown away
- Natural mapping between genotype and phenotype
 - GA and NN are a good match!

Problems with CNE

- Evolution converges the population (as usual with EAs)
 - Diversity is lost; progress stagnates
- Competing conventions
 - Different, incompatible encodings for the same solution
- ► Too many parameters to be optimized simultaneously
 - Thousands of weight values at once

- Evolving individual neurons to cooperate in networks^{1,57,65}
- ► E.g. Enforced Sub-Populations (ESP²⁴)
 - ► Each (hidden) neuron in a separate subpopulation
 - ► Fully connected; weights of each neuron evolved
 - Populations learn compatible subtasks

Evolving Neurons with ESP

- Evolution encourages diversity automatically
 - · Good networks require different kinds of neurons
- Evolution discourages competing conventions
 - Neurons optimized for compatible roles
- Large search space divided into subtasks
 - Optimize compatible neurons

Evolving Partial Networks II

- Extend the idea to evolving connection weights
- ► E.g. Cooperative Synapse NeuroEvolution (CoSyNE²⁹)
 - Connection weights in separate subpopulations
 - Networks formed by combining neurons with the same index
 - Networks mutated and recombined; indices permutated
- Sustains diversity, results in efficient search

Advanced NE 2: Evolutionary Strategies

- Evolving complete networks with ES (CMA-ES³⁶)
- Small populations, no crossover
- Instead, intelligent mutations
 - Adapt covariance matrix of mutation distribution
 - Take into account correlations between weights
- ► Smaller space, less convergence, fewer conventions

Advanced NE 3: Evolving Topologies

- ► Optimizing connection weights and network topology^{3,17,22,113}
- ► E.g. Neuroevolution of Augmenting Topologies (NEAT^{86,89})
- Based on Complexification
- Of networks:
 - Mutations to add nodes and connections
- Of behavior:
 - Elaborates on earlier behaviors

Why Complexification?

- Problem with NE: Search space is too large
- Complexification keeps the search tractable
 - Start simple, add more sophistication
- Incremental construction of intelligent agents

Advanced NE 4: Indirect Encodings I

- Instructions for constructing the network evolved
 - Instead of specifying each unit and connection^{3,17,53,83,113}
- ► E.g. Cellular Encoding (CE³¹)
- Grammar tree describes construction
 - Sequential and parallel cell division
 - Changing thresholds, weights
 - ► A "developmental" process that results in a network

- Encode the networks as spatial patterns
- E.g. Hypercube-based NEAT (HyperNEAT¹³)
- Evolve a neural network (CPPN) to generate spatial patterns
 - ▶ 2D CPPN: (x, y) input \rightarrow grayscale output
 - 4D CPPN: (x_1, y_1, x_2, y_2) input $\rightarrow w$ output
 - Connectivity and weights can be evolved indirectly
 - Works with very large networks (millions of connections)

Properties of Indirect Encodings I

\square		
\square		isi

- Smaller search space
- Avoids competing conventions
- Describes classes of networks efficiently
- Modularity, reuse of structures
 - Recurrency symbol in CE: XOR \rightarrow parity
 - Repetition with variation in CPPNs
 - Useful for evolving morphology

How Do the NE Methods Compare?

Poles	Method	Evals
Two	CE	(840,000)
	CNE	87,623
	ESP	26,342
	NEAT	6,929
	CMA-ES	6,061
	CoSyNE	3,416

Two poles, no velocities, damping fitness 29

- Advanced methods better than CNE
- Advanced methods still under development
- Indirect encodings future work

Properties of Indirect Encodings II

- Not fully explored (yet)
 - See e.g. GDS track at GECCO
- Promising current work
 - More general L-systems; developmental codings; embryogeny⁹⁰
 - Scaling up spatial coding^{14,23}
 - Genetic Regulatory Networks⁶⁹
 - Evolution of symmetries¹⁰³

- ► Incremental and multiobjective evolution^{26,77,98,112}
- ► Utilizing population culture^{6,51,94}
- ► Utilizing evaluation history⁴⁸
- ► Evolving NN ensembles and modules^{37,47,64,70,108}
- ► Evolving transfer functions and learning rules^{9,72,93}
- ► Bilevel optimization of NE⁴⁶ (Liang GECCO'15)
- Combining learning and evolution
- Evolving for novelty

- Good learning algorithms exist for NN
 - Why not use them as well?
- Evolution provides structure and initial weights
- ► Fine tune the weights by learning

Lamarckian Evolution

- ► Lamarckian evolution is possible^{8,31}
 - Coding weight changes back to chromosome
- Difficult to make it work
 - Diversity reduced; progress stagnates

Baldwin Effect

- Learning can guide Darwinian evolution as well^{5,31,33}
 Makes fitness evaluations more accurate
- ► With learning, more likely to find the optimum if close
- Can select between good and bad individuals better
 - Lamarckian not necessary

- ► From a related task⁶⁰
 - Useful internal representations
- ► Evolve the targets⁶³
 - Useful training situations
- ► From Q-learning equations¹⁰⁹
 - When evolving a value function
- ► Utilize Hebbian learning^{19,87,101}
 - Correlations of activity
- ► From the population^{51,94}
 - Social learning
- ► From humans⁸
 - ► E.g. expert players, drivers

Evolving Novelty

- Motivated by humans as fitness functions
- ► E.g. picbreeder.com, endlessforms.com⁸⁰
 - CPPNs evolved; Human users select parents
- No specific goal
 - Interesting solutions preferred
 - Similar to biological evolution?

Novelty Search

- ► Reward maximally different solutions
 - ► Can be a secondary, diversity objective ⁵⁹
 - ► Or, even as the only objective ^{40,43}
- ► To be different, need to capture structure
 - Problem solving as a side effect
- Potential for innovation
- Model of biological evolution, niching⁴² (Lehman GECCO'15)
- Needs to be understood better

Novelty Search Demo

- Fitness-based evolution is rigid
 - Requires gradual progress
- Novelty-based evolution is more innovative, natural
 - Allows building on deceptive solutions
- ► (Demo)

- Control
- Robotics
- Artificial life
- ► Gaming

Issues:

- ► Facilitating robust transfer from simulation^{28,99}
- Utilizing problem symmetry and hierarchy^{39,102,103}
- ► Utilizing coevolution^{71,91}
- ► Evolving multimodal behavior^{76,77,108}
- ► Evolving teams of agents^{7,88,114}
- ► Making evolution run in real-time⁸⁸

Applications to Control

- Pole-balancing benchmark
 - Originates from the 1960s
 - Original 1-pole version too easy
 - Several extensions: acrobat, jointed, 2-pole, particle chasing⁶⁴
- Good surrogate for other control tasks
 - Vehicles and other physical devices
 - Process control¹⁰⁴

Controlling a Finless Rocket

Task: Stabilize a finless version of the Interorbital Systems RSX-2 sounding rocket²⁷

- Scientific measurements in the upper atmosphere
- 4 liquid-fueled engines with variable thrust
- Without fins will fly much higher for same amount of fuel

Rocket Stability

 Used on large scale launch vehicles (Saturn, Titan)

- Typically based on classical linear feedback control
- High level of domain knowledge required
- ► Expensive, heavy

- General rocket simulator
- Models complex interaction between airframe, propulsion, aerodynamics, and atmosphere
- Used by IOS in testing their rocket designs
- Accurate geometric model of the RSX-2

Rocket Guidance Network

Results: Control Policy

(Demo)

Applications to Robotics

- ► Controlling a robot arm⁵⁶
 - Compensates for an inop motor
- ► Robot walking^{35,82,102}
 - Various physical platforms
- ► Mobile robots^{12,18,61,85}
 - Transfers from simulation to physical robots
 - Evolution possible on physical robots

Multilegged Walking

- Navigate rugged terrain better than wheeled robots
- Controller design is more challenging
 - ► Leg coordination, robustness, stability, fault-tolerance, ...
- Hand-design is generally difficult and brittle
- ► Large design space often makes evolution ineffective

- ► Symmetry evolution approach^{100,102,103}
 - A neural network controls each leg
 - Connections between controllers evolved through symmetry breaking
 - Connections within individual controllers evolved through neuroevolution

Versatile, Robust Gaits

Different gaits

Obstacle field

- Different gaits on flat ground
 - Pronk, pace, bound, trot
 - Changes gait to get over obstacles
- ► (Demo)

Innovative, Effective Solutions

Evolved

► (Demo)

Asymmetric gait on inclines

Hard to design by hand

One leg pushes up, others forward

Handcoded

Transfer to a Physical Robot I

Simulated

- Built at Hod Lipson's lab (Cornell U.)
 - Standard motors, battery, controller board
 - Custom 3D-printed legs, attachments
 - Simulation modified to match
- General, robust transfer⁹⁹
 - Noise to actuators during simulation
 - · Generalizes to different surfaces, motor speeds
- (Demo)

Evolved

Handcoded

- Evolved a solution for three-legged walking!
- ► (Demo)

- Gaining insight into neural structure
 - ► E.g. evolving a command neuron^{2,38,73}
- Understanding animal behaviors
 - Signaling, herding, hunting...^{62,66,67,68,97,106,107,114}

Body-Brain Coevolution

Body

Brain

- ► Evolved Virtual Creatures^{44,45,84}
 - Body: Blocks, muscles, joints, sensors
 - Brain: A neural network (with general nodes)
 - Evolved together in a physical simulation
- ► Syllabus, Encapsulation, Pandemodium

Syllabus

Constructed by hand; body and brain evolved together

- Once evolved, a trigger node is added
- ► (Demo)

Conflicting behaviors: Highest trigger wins

► (Demo)

Evolving Fight-or-Flight Behavior

- Step-by-step construction of complex behavior
- Primitives and three levels of complexity
- ► (Demos)

Turn to Light

- First level of complexity
- Selecting between alternative primitives

► First level of complexity (Sims 1994)

Selecting between alternative primitives

Alternative behavior primitive

Attack

Second level of complexity (beyond Sims and others)

Turn from Light

Alternative first-level behavior

Alternative second-level behavior

Third level of complexity

Insight: Body/Brain Coevolution

- Evolving body and brain together poses strong constraints
 - Behavior appears believable
 - Worked well also in BotPrize (Turing test for game bots)
- What about constraints from the environment?

Coevolution of Behavior

Natural predators and prey

Formalization of behavior

- Complex cooperation observed in pursuit and evasion
 - Motivated by biology, esp. hyenas vs. zebras (Kay Holekamp, MSU)
 - Largely innate, possible to see behaviors and their evolution
- ► Such behaviors evolve together, in coevolutionary environment
 - ► Simultaneous competitive and cooperative coevolution^{66,68}

Experimental Setup

- Toroidal grid world
- Predators, prey move with same speed in 4 directions
- ► No direct communication between team members
 - Communication still possible through stigmergy
- Does a coevolutionary arms race result?
- ► (Demos)

Predator-Prey Arms Race II

180-200: All predators cooperate

200-250: Predators herd two prey

Complex behaviors don't evolve in a vacuum

- Result from coevolutionary arms race
- Embedded in a changing environment

Predator-Prey Arms Race I

50-75: Single predator catches prey

100-150: Two predators cooperate

75-100: Prey evades by circling

150-180: Prey baits and escapes

Open Questions

- Role of communication
 - Stigmergy vs. direct communication in hunting¹¹⁴
 - Quorum sensing in e.g. confronting lions
- ► Role of rankings
 - Efficient selection when evaluation is costly?
- Role of individual vs. team rewards
- Can lead to general computational insights

250-300: Prey evade by scattering

Bigger Questions

- Gaining insight into cognitive architectures
 - Executive, perception, emotion, memory
- ► Emergence of language, learning, social structures
- May require overcoming deception
 - ► Through speciation, niching in nature⁴²
 - Through novelty search in computation?⁴¹

Applications to Games

- ► Good research platform⁵²
 - · Controlled domains, clear performance, safe
 - · Economically important; training games possible
- Board games: beyond limits of search
 - ► Evaluation functions in checkers, chess^{10,20,21}
 - ► Filtering information in go, othello^{55,92}
 - Opponent modeling in poker⁴⁹

Video Games

- Economically and socially important
- GOFAI does not work well
 - · Embedded, real-time, noisy, multiagent, changing
 - Adaptation a major component
- Possibly research catalyst for CI
 - Like board games were for GOFAI in the 1980s

Video Games II

- Can be used to build "mods" to existing games
 Adapting characters, assistants, tools
- Can also be used to build new games
 - New genre: Machine Learning game

Agents perform many different tasks

- E.g. eat pills, avoid ghosts, eat powerpills, eat ghosts
- Sometimes clearly separate in time
- Sometimes multiple tasks at once
- How can we evolve them into a single network? (Schrum GECCO'15)

MM-NEAT: Modular Multiobjective Approach

(a) Single-module Network

(b) Multitask Network

(c) Preference Neuron Network

- Evolution discovers modules and when to use them
 - Vs. human-designed division with multitasking
- ► Multiple modules with preference neurons^{78,79}
 - Modules implement different behaviors
 - Preference neurons used to choose among them
 - Module-mutation adds new modules
- Evolved towards multiple objectives
 - Correspond to dimensions of game play
 - ► E.g. pills and ghosts in Ms. Pac-Man

Human-Designed Task Division

Multitask approach

- One module for threat ghosts
- Another module for edible ghosts
- Works ok, but...
- ► (Demo)

Evolution-Discovered Task Division

- One module used 95% of the time
 - Eat pills, avoid ghosts, chase ghosts
 - Different behaviors with a common base
- A second module 5% of the time
 - Luring ghosts near a power pill
 - Escaping from tight spaces
- A different multimodal perspective
- Not as obvious, but more powerful
- (Demo)

Challenge 2: Evolving Humanlike Behavior

- Botprize competition, 2007-2012
 - Turing Test for game bots (\$10,000 prize)
- Three players in Unreal Tournament 2004:
 - ► Human confederate: tries to win
 - Software bot: pretends to be human
 - Human judge: tries to tell them apart!

Evolving an Unreal Bot

- Evolve effective fighting behavior
 - Human-like with resource limitations (speed, accuracy...)
- Also scripts & learning from humans (unstuck, wandering...)
- 2007-2011: bots 25-30% vs. humans 35-80% human
- 6/2012 best bot better than 50% of the humans
- ▶ 9/2012...?

A New Genre: Machine Learning Games

- ▶ In 2012, two teams reach the 50% mark!
- ► Fascinating challenges remain:
 - Judges can still differentiate in seconds
 - Judges lay cognitive, high-level traps
 - Team competition: collaboration as well
- ► (Demo)

Success!!!

- ► E.g. NERO
 - Goal: to show that machine learning games are viable
 - Professionally produced by Digital Media Collaboratory, UTAustin
 - Developed mostly by volunteer undergraduates

NERO Gameplay

- Teams of agents trained to battle each other
 - Player trains agents through excercises
 - Agents evolve in real time
 - Agents and player collaborate in battle
- ► New genre: Learning is the game^{32,88}
 - Challenging platform for reinforcement learning
 - ► Real time, open ended, requires discovery
- ► Try it out:
 - Available for download at http://nerogame.org
 - Open source research platform version at github.com/nnrg/opennero/wiki

Real-time NEAT

- ► A parallel, continuous version of NEAT⁸⁸
- ► Individuals created and replaced every *n* ticks
- ► Parents selected probabilistically, weighted by fitness
- Long-term evolution equivalent to generational NEAT

NERO Player Actions

- Player can place items on the field
 e.g. static enemies, turrets, walls, rovers, flags
- Sliders specify relative importance of goals
 e.g. approach/avoid enemy, cluster/disperse, hit target, avoid fire...
- Networks evolved to control the agents
- ► (Demos)

NERO Training Demo

Approach Enemy

Avoid, first-person

Switch to Avoid

Maze Running

Teams of three

- ► Creating art, music, dance...^{11,16,34,81}
- ► Theorem proving¹⁵
- ► Time-series prediction⁵⁰
- Computer system optimization²⁵
- Manufacturing optimization³⁰
- ► Process control optimization^{104,105}
- ► Game strategy optimization⁴ (Bahceci GECCO'15)
- Measuring top quark mass¹¹⁰
- ► Etc.

Evaluation of Applications

- Neuroevolution strengths
 - ► Can work very fast, even in real-time
 - Potential for arms race, discovery
 - · Effective in continuous, non-Markov domains
- Requires many evaluations
 - · Requires an interactive domain for feedback
 - Best when parallel evaluations possible
 - Works with a simulator & transfer to domain

Conclusion

- NE is a powerful technology for sequential decision tasks
 - Evolutionary computation and neural nets are a good match
 - Lends itself to many extensions
 - Powerful in applications
- Easy to adapt to applications
 - Control, robotics, optimization
 - Artificial life, biology
 - Gaming: entertainment, training
- Lots of future work opportunities
 - Theory needs to be developed
 - Indirect encodings
 - Learning and evolution
 - Knowledge, interaction, novelty

Further Material

- Slides (including the bibliography) available at www.cs.utexas.edu/users/risto/talks/ne-tutorial
- Demos in this talk are at www.cs.utexas.edu/users/risto/talks/ne-tutorial and many more at nn.cs.utexas.edu
- A Scholarpedia article on Neuroevolution is at www.scholarpedia.org/article/Neuroevolution
- A step-by-step neuroevolution exercise (evolving behavior in the NERO game) is at www.cs.utexas.edu/users/risto/talks/ne-tutorial

- A. Agogino, K. Tumer, and R. Miikkulainen, Efficient credit assignment through evaluation function decomposition, in: Proceedings of the Genetic and Evolutionary Computation Conference (2005).
- [2] R. Aharonov-Barki, T. Beker, and E. Ruppin, Emergence of memory-Driven command neurons in evolved artificial agents, *Neural Computation*, 13(3):691–716 (2001).
- [3] P. J. Angeline, G. M. Saunders, and J. B. Pollack, An evolutionary algorithm that constructs recurrent neural networks, IEEE Transactions on Neural Networks, 5:54–65 (1994).
- [4] E. Bahceci and R. Miikkulainen, Evolving strategies for social innovation games, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2015), Madrid, Spain (July 2015).
- [5] J. M. Baldwin, A new factor in evolution, The American Naturalist, 30:441-451, 536-553 (1896)
- [6] R. K. Belew, Evolution, learning and culture: Computational metaphors for adaptive algorithms, *Complex Systems*, 4:11–49 (1990).
- [7] B. D. Bryant and R. Miikkulainen, Neuroevolution for adaptive teams, in: Proceedings of the 2003 Congress on Evolutionary Computation (CEC 2003), volume 3, 2194–2201, IEEE, Piscataway, NJ (2003).
- [8] B. D. Bryant and R. Mikkulainen, Acquiring visibly intelligent behavior with example-guided neuroevolution, in: Proceedings of the Twenty-Second National Conference on Artificial Intelligence, AAAI Press, Menlo Park, CA (2007).
- [9] D. J. Chalmers, The evolution of learning: An experiment in genetic connectionism, in: Touretzky et al. ⁹⁶, 81–90.
- [10] K. Chellapilla and D. B. Fogel, Evolution, neural networks, games, and intelligence, Proceedings of the IEEE, 87:1471–1496 (1999).
- [11] C.-C. Chen and R. Miikkulainen, Creating melodies with evolving recurrent neural networks, in: Proceedings of the INNS-IEEE International Joint Conference on Neural Networks, 2241–2246, IEEE, Piscataway, NJ (2001).
- [12] D. Cliff, I. Harvey, and P. Husbands, Explorations in evolutionary robotics, Adaptive Behavior, 2:73–110 (1993).

Bibliography II

- [13] D. B. D'Ambrosio and K. O. Stanley, A novel generative encoding for exploiting neural network sensor and output geometry, in: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation (GECCO '07), 974–981, ACM, New York, NY, USA (2007).
- [14] D. B. D'Ambrosio and K. O. Stanley, Generative encoding for multiagent learning, in: Proceedings of the Genetic and Evolutionary Computation Conference (2008).
- [15] N. S. Desai and R. Miikkulainen, Neuro-evolution and natural deduction, in: Proceedings of The First IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks, 64–69, IEEE, Piscataway, NJ (2000).
- [16] G. Dubbin and K. O. Stanley, Learning to dance through interactive evolution, in: Proceedings of the Eighth European Event on Evolutionary and Biologically Inspired Music, Sound, Art and Design, Springer, Berlin (2010).
- [17] D. Floreano, P. Dürr, and C. Mattiussi, Neuroevolution: From architectures to learning, Evolutionary Intelligence, 1:47–62 (2008).
- [18] D. Floreano and F. Mondada, Evolutionary neurocontrollers for autonomous mobile robots, *Neural Networks*, 11:1461–1478 (1998).
- [19] D. Floreano and J. Urzelai, Evolutionary robots with on-line self-organization and behavioral fitness, Neural Networks, 13:431–4434 (2000).
- [20] D. B. Fogel, Blondie24: Playing at the Edge of Al, Morgan Kaufmann, San Francisco (2001).
- [21] D. B. Fogel, T. J. Hays, S. L. Hahn, and J. Quon, Further evolution of a self-learning chess program, in: Proceedings of the IEEE Symposium on Computational Intelligence and Games, IEEE, Piscataway, NJ (2005).
- [22] B. Fullmer and R. Miikkulainen, Using marker-based genetic encoding of neural networks to evolve finite-state behaviour, in: Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life, F. J. Varela and P. Bourgine, eds., 255–262, MIT Press, Cambridge, MA (1992).
- [23] J. J. Gauci and K. O. Stanley, A case study on the critical role of geometric regularity in machine learning, in: Proceedings of the Twenty-Third National Conference on Artificial Intelligence, AAAI Press, Menlo Park, CA (2008).

Bibliography III

- [24] F. Gomez, Robust Non-Linear Control Through Neuroevolution, Ph.D. thesis, Department of Computer Sciences, The University of Texas at Austin (2003).
- [25] F. Gomez, D. Burger, and R. Miikkulainen, A neuroevolution method for dynamic resource allocation on a chip multiprocessor, in: *Proceedings of the INNS-IEEE International Joint Conference on Neural Networks*, 2355–2361, IEEE, Piscataway, NJ (2001).
- [26] F. Gomez and R. Miikkulainen, Incremental evolution of complex general behavior, Adaptive Behavior, 5:317–342 (1997).
- [27] F. Gomez and R. Miikkulainen, Active guidance for a finless rocket using neuroevolution, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2084–2095, Morgan Kaufmann, San Francisco (2003).
- [28] F. Gomez and R. Miikkulainen, Transfer of neuroevolved controllers in unstable domains, in: Proceedings of the Genetic and Evolutionary Computation Conference, Springer, Berlin (2004).
- [29] F. Gomez, J. Schmidhuber, and R. Miikkulainen, Accelerated neural evolution through cooperatively coevolved synapses, *Journal of Machine Learning Research*, 9:937–965 (2008).
- [30] B. Greer, H. Hakonen, R. Lahdelma, and R. Miikkulainen, Numerical optimization with neuroevolution, in: Proceedings of the 2002 Congress on Evolutionary Computation, 361–401, IEEE, Piscataway, NJ (2002).
- [31] F. Gruau and D. Whitley, Adding learning to the cellular development of neural networks: Evolution and the Baldwin effect, Evolutionary Computation, 1:213–233 (1993).
- [32] E. J. Hastings, R. K. Guha, and K. O. Stanley, Automatic content generation in the galactic arms race video game, *IEEE Transactions on Computational Intelligence and AI in Games*, 1:245–263 (2009).
- [33] G. E. Hinton and S. J. Nowlan, How learning can guide evolution, *Complex Systems*, 1:495–502 (1987).
- [34] A. K. Hoover, M. P. Rosario, and K. O. Stanley, Scaffolding for interactively evolving novel drum tracks for existing songs, in: *Proceedings of the Sixth European Workshop on Evolutionary and Biologically Inspired Music, Sound, Art and Design*, Springer, Berlin (2008).
- [35] G. S. Hornby, S. Takamura, J. Yokono, O. Hanagata, M. Fujita, and J. Pollack, Evolution of controllers from a high-level simulator to a high DOF robot, in: Evolvable Systems: From Biology to Hardware; Proceedings of the Third International Conference, 80–89, Springer, Berlin (2000).

Bibliography IV

- [36] C. Igel, Neuroevolution for reinforcement learning using evolution strategies, in: Proceedings of the 2003 Congress on Evolutionary Computation, R. Sarker, R. Reynolds, H. Abbass, K. C. Tan, B. McKay, D. Essam, and T. Gedeon, eds., 2588–2595, IEEE Press, Piscataway, NJ (2003).
- [37] A. Jain, A. Subramoney, and R. Miikkulainen, Task decomposition with neuroevolution in extended predator-prey domain, in: *Proceedings of Thirteenth International Conference on the Synthesis and Simulation of Living Systems*, East Lansing, MI, USA (2012).
- [38] A. Keinan, B. Sandbank, C. C. Hilgetag, I. Meilijson, and E. Ruppin, Axiomatic scalable neurocontroller analysis via the Shapley value, Artificial Life, 12:333–352 (2006).
- [39] N. Kohl and R. Miikkulainen, Evolving neural networks for strategic decision-making problems, Neural Networks, 22:326–337 (2009).
- [40] J. Lehman and R. Miikkulainen, Effective diversity maintenance in deceptive domains, in: Proceedings of the Genetic and Evolutionary Computation Conference (2013).
- [41] J. Lehman and R. Miikkulainen, Overcoming deception in evolution of cognitive behaviors, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2014), Vancouver, BC, Canada (July 2014).
- [42] J. Lehman and R. Miikkulainen, Enhancing divergent search through extinction events, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2015), Madrid, Spain (July 2015).
- [43] J. Lehman and K. O. Stanley, Abandoning objectives: Evolution through the search for novelty alone, Evolutionary Computation, 2011:189–223 (2010).
- [44] D. Lessin, D. Fussell, and R. Miikkulainen, Open-ended behavioral complexity for evolved virtual creatures, in: Proceedings of the Genetic and Evolutionary Computation Conference (2013).
- [45] D. Lessin, D. Fussell, and R. Miikkulainen, Trading control intelligence for physical intelligence: Muscle drives in evolved virtual creatures, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2014), Vancouver, BC, Canada (July 2014).
- [46] J. Z. Liang and R. Miikkulainen, Evolutionary bilevel optimization for complex control tasks, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2015), Madrid, Spain (July 2015).
- [47] Y. Liu, X. Yao, and T. Higuchi, Evolutionary ensembles with negative correlation learning, IEEE Transactions on Evolutionary Computation, 4:380–387 (2000).

Bibliography VI

- [59] J.-B. Mouret and S. Doncieux, Overcoming the bootstrap problem in evolutionary robotics using behavioral diversity, in: Proceedings of the IEEE Congress on Evolutionary Computation, 1161–1168, IEEE, Piscataway, NJ (2009).
- [60] S. Nolfi, J. L. Elman, and D. Parisi, Learning and evolution in neural networks, Adaptive Behavior, 2:5–28 (1994).
- [61] S. Nolfi and D. Floreano, Evolutionary Robotics, MIT Press, Cambridge (2000).
- [62] S. Nolfi and M. Mirolli, eds., Evolution of Communication and Language in Embodied Agents, Springer, Berlin (2010).
- [63] S. Nolfi and D. Parisi, Good teaching inputs do not correspond to desired responses in ecological neural networks, Neural Processing Letters, 1(2):1–4 (1994).
- [64] D. Pardoe, M. Ryoo, and R. Miikkulainen, Evolving neural network ensembles for control problems, in: Proceedings of the Genetic and Evolutionary Computation Conference (2005).
- [65] M. A. Potter and K. A. D. Jong, Cooperative coevolution: An architecture for evolving coadapted subcomponents, *Evolutionary Computation*, 8:1–29 (2000).
- [66] P. Rajagopalan, A. Rawal, R. Miikkulainen, M. A. Wiseman, and K. E. Holekamp, The role of reward structure, coordination mechanism and net return in the evolution of cooperation, in: *Proceedings of the IEEE Conference on Computational Intelligence and Games (CIG 2011)*, Seoul, South Korea (2011).
- [67] A. Rawal, P. Rajagopalan, K. E. Holekamp, and R. Miikkulainen, Evolution of a communication code in cooperative tasks, in: Proceedings of Thirteenth International Conference on the Synthesis and Simulation of Living Systems (ALife'2013), East Lansing, MI, USA (2012).
- [68] A. Rawal, P. Rajagopalan, and R. Miikkulainen, Constructing competitive and cooperative agent behavior using coevolution, in: IEEE Conference on Computational Intelligence and Games (CIG 2010), Copenhagen, Denmark (2010).
- [69] J. Reisinger and R. Miikkulainen, Acquiring evolvability through adaptive representations, in: Proceeedings of the Genetic and Evolutionary Computation Conference, 1045–1052 (2007).
- [70] J. Reisinger, K. O. Stanley, and R. Miikkulainen, Evolving reusable neural modules, in: Proceedings of the Genetic and Evolutionary Computation Conference (2004).

Bibliography V

- [48] A. Lockett and R. Milkkulainen, Neuroannealing: Martingale-driven learning for neural network, in: Proceedings of the Genetic and Evolutionary Computation Conference (2013).
- [49] A. J. Lockett, C. L. Chen, and R. Miikkulainen, Evolving explicit opponent models in game playing, in: Proceedings of the Genetic and Evolutionary Computation Conference (2007).
- [50] J. R. McDonnell and D. Waagen, Evolving recurrent perceptrons for time-series modeling, IEEE Transactions on Evolutionary Computation, 5:24–38 (1994).
- [51] P. McQuesten, Cultural Enhancement of Neuroevolution, Ph.D. thesis, Department of Computer Sciences, The University of Texas at Austin, Austin, TX (2002). Technical Report AI-02-295.
- [52] R. Miikkulainen, B. D. Bryant, R. Cornelius, I. V. Karpov, K. O. Stanley, and C. H. Yong, Computational intelligence in games, in: *Computational Intelligence: Principles and Practice*, G. Y. Yen and D. B. Fogel, eds., IEEE Computational Intelligence Society, Piscataway, NJ (2006).
- [53] E. Mjolsness, D. H. Sharp, and B. K. Alpert, Scaling, machine learning, and genetic neural nets, Advances in Applied Mathematics, 10:137–163 (1989).
- [54] D. J. Montana and L. Davis, Training feedforward neural networks using genetic algorithms, in: Proceedings of the 11th International Joint Conference on Artificial Intelligence, 762–767, San Francisco: Morgan Kaufmann (1989).
- [55] D. E. Moriarty, Symbiotic Evolution of Neural Networks in Sequential Decision Tasks, Ph.D. thesis, Department of Computer Sciences, The University of Texas at Austin (1997). Technical Report UT-Al97-257.
- [56] D. E. Moriarty and R. Miikkulainen, Evolving obstacle avoidance behavior in a robot arm, in: From Animals to Animats 4: Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior, P. Maes, M. J. Mataric, J.-A. Meyer, J. Pollack, and S. W. Wilson, eds., 468–475, Cambridge, MA: MIT Press (1996).
- [57] D. E. Moriarty and R. Miikkulainen, Forming neural networks through efficient and adaptive co-evolution, Evolutionary Computation, 5:373–399 (1997).
- [58] D. E. Moriarty, A. C. Schultz, and J. J. Grefenstette, Evolutionary algorithms for reinforcement learning, Journal of Artificial Intelligence Research, 11:199–229 (1999).

Bibliography VII

- [71] C. D. Rosin and R. K. Belew, New methods for competitive evolution, *Evolutionary Computation*, 5 (1997).
- [72] T. P. Runarsson and M. T. Jonsson, Evolution and design of distributed learning rules, in: Proceedings of The First IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks, 59–63, IEEE, Piscataway, NJ (2000).
- [73] E. Ruppin, Evolutionary autonomous agents: A neuroscience perspective, Nature Reviews Neuroscience (2002).
- [74] J. D. Schaffer, D. Whitley, and L. J. Eshelman, Combinations of genetic algorithms and neural networks: A survey of the state of the art, in: *Proceedings of the International Workshop on Combinations of Genetic Algorithms and Neural Networks*, D. Whitley and J. Schaffer, eds., 1–37, IEEE Computer Society Press, Los Alamitos, CA (1992).
- [75] J. Schmidhuber, Deep learning in neural networks: An overview, Neural Networks, 61:85–117 (2015).
- [76] J. Schrum and R. Miikkulainen, Evolving multi-modal behavior in NPCs, in: Proceedings of the IEEE Symposium on Computational Intelligence and Games, IEEE, Piscataway, NJ (2009).
- [77] J. Schrum and R. Miikkulainen, Evolving agent behavior in multiobjective domains using fitness-based shaping, in: Proceedings of the Genetic and Evolutionary Computation Conference (2010).
- [78] J. Schrum and R. Miikkulainen, Evolving multimodal behavior with modular neural networks in ms. pac-man, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2014), Vancouver, BC, Canada (July 2014).
- [79] J. Schrum and R. Miikkulainen, Solving interleaved and blended sequential decision-making problems through modular neuroevolution, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2015), Madrid, Spain (July 2015).
- [80] J. Secretan, N. Beato, D. B. D'Ambrosio, A. Rodriguez, A. Campbell, J. T. Folsom-Kovarik, and K. O. Stanley, Picbreeder: A case study in collaborative evolutionary exploration of design space, Evolutionary Computation, 19:345–371 (2011).
- [81] J. Secretan, N. Beato, D. B. D'Ambrosio, A. Rodriguez, A. Campbell, and K. O. Stanley, Picbreeder: Evolving pictures collaboratively online, in: *Proceedings of Computer Human Interaction Conference*, ACM, New York (2008).

- [82] C. W. Seys and R. D. Beer, Evolving walking: The anatomy of an evolutionary search, in: From Animals to Animats 8: Proceedings of the Eight International Conference on Simulation of Adaptive Behavior, S. Schaal, A. Ijspeert, A. Billard, S. Vijayakumar, J. Hallam, and J.-A. Meyer, eds., 357–363, MIT Press, Cambridge, MA (2004).
- [83] A. A. Siddiqi and S. M. Lucas, A comparison of matrix rewriting versus direct encoding for evolving neural networks, in: *Proceedings of IEEE International Conference on Evolutionary Computation*, 392–397, IEEE, Piscataway, NJ (1998).
- [84] K. Sims, Evolving 3D morphology and behavior by competition, in: Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Living Systems (Artificial Life IV), R. A. Brooks and P. Maes, eds., 28–39, MIT Press, Cambridge, MA (1994).
- [85] Y. F. Sit and R. Miikkulainen, Learning basic navigation for personal satellite assistant using neuroevolution, in: Proceedings of the Genetic and Evolutionary Computation Conference (2005).
- [86] K. O. Stanley, Efficient Evolution of Neural Networks Through Complexification, Ph.D. thesis, Department of Computer Sciences, The University of Texas at Austin, Austin, TX (2003).
- [87] K. O. Stanley, B. D. Bryant, and R. Miikkulainen, Evolving adaptive neural networks with and without adaptive synapses, in: Proceedings of the 2003 Congress on Evolutionary Computation, IEEE, Piscataway, NJ (2003).
- [88] K. O. Stanley, B. D. Bryant, and R. Miikkulainen, Real-time neuroevolution in the NERO video game, IEEE Transactions on Evolutionary Computation, 9(6):653–668 (2005).
- [89] K. O. Stanley and R. Miikkulainen, Evolving Neural Networks Through Augmenting Topologies, Evolutionary Computation, 10:99–127 (2002).
- [90] K. O. Stanley and R. Miikkulainen, A taxonomy for artificial embryogeny, Artificial Life, 9(2):93-130 (2003).
- [91] K. O. Stanley and R. Miikkulainen, Competitive coevolution through evolutionary complexification, Journal of Artificial Intelligence Research, 21:63–100 (2004).
- [92] K. O. Stanley and R. Miikkulainen, Evolving a roving eye for Go, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2004), Springer Verlag, Berlin (2004).
- [93] D. G. Stork, S. Walker, M. Burns, and B. Jackson, Preadaptation in neural circuits, in: International Joint Conference on Neural Networks (Washington, DC), 202–205, IEEE, Piscataway, NJ (1990).

Bibliography X

- [104] A. van Eck Conradie, R. Miikkulainen, and C. Aldrich, Adaptive control utilising neural swarming, in: Proceedings of the Genetic and Evolutionary Computation Conference, W. B. Langdon, E. Cantú-Paz, K. E. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. K. Burke, and N. Jonoska, eds., San Francisco: Morgan Kaufmann (2002).
- [105] A. van Eck Conradie, R. Miikkulainen, and C. Aldrich, Intelligent process control utilizing symbiotic memetic neuro-evolution, in: Proceedings of the 2002 Congress on Evolutionary Computation (2002).
- [106] G. M. Werner and M. G. Dyer, Evolution of communication in artificial organisms, in: Proceedings of the Workshop on Artificial Life (ALIFE '90), C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, eds., 659–687, Reading, MA: Addison-Wesley (1992).
- [107] G. M. Werner and M. G. Dyer, Evolution of herding behavior in artificial animals, in: Proceedings of the Second International Conference on Simulation of Adaptive Behavior, J.-A. Meyer, H. L. Roitblat, and S. W. Wilson, eds., Cambridge, MA: MIT Press (1992).
- [108] S. Whiteson, N. Kohl, R. Miikkulainen, and P. Stone, Evolving keepaway soccer players through task decomposition, *Machine Learning*, 59:5–30 (2005).
- [109] S. Whiteson and P. Stone, Evolutionary function approximation for reinforcement learning, *Journal of Machine Learning Research*, 7:877–917 (2006).
- [110] S. Whiteson and D. Whiteson, Stochastic optimization for collision selection in high energy physics, in: Proceedings of the Nineteenth Annual Innovative Applications of Artificial Intelligence Conference (2007).
- [111] D. Whitley, S. Dominic, R. Das, and C. W. Anderson, Genetic reinforcement learning for neurocontrol problems, *Machine Learning*, 13:259–284 (1993).
- [112] A. P. Wieland, Evolving controls for unstable systems, in: Touretzky et al. 96, 91-102.
- [113] X. Yao, Evolving artificial neural networks, Proceedings of the IEEE, 87(9):1423-1447 (1999).
- [114] C. H. Yong and R. Miikkulainen, Coevolution of role-based cooperation in multi-agent systems, IEEE Transactions on Autonomous Mental Development, 1:170–186 (2010).

- [94] W. Tansey, E. Feasley, and R. Miikkulainen, Accelerating evolution via egalitarian social learning, in: Proceedings of the 14th Annual Genetic and Evolutionary Computation Conference (GECCO 2012), Philadelphia, Pennsylvania, USA (July 2012).
- [95] M. Taylor, S. Whiteson, and P. Stone, Comparing evolutionary and temporal difference methods in a reinforcement learning domain, in: *Proceedings of the Genetic and Evolutionary Computation Conference* (2006).
- [96] D. S. Touretzky, J. L. Elman, T. J. Sejnowski, and G. E. Hinton, eds., Proceedings of the 1990 Connectionist Models Summer School, San Francisco: Morgan Kaufmann (1990).
- [97] E. Tuci, An investigation of the evolutionary origin of reciprocal communication using simulated autonomous agents, *Biological Cybernetics*, 101:183–199 (2009).
- [98] J. Urzelai, D. Floreano, M. Dorigo, and M. Colombetti, Incremental robot shaping, *Connection Science*, 10:341–360 (1998).
- [99] V. Valsalam, J. Hiller, R. MacCurdy, H. Lipson, and R. Miikkulainen, Constructing controllers for physical multilegged robots using the enso neuroevolution approach, *Evolutionary Intelligence*, 14:303–331 (2013).
- [100] V. Valsalam and R. Miikkulainen, Evolving symmetry for modular system design, IEEE Transactions on Evolutionary Computation, 15:368–386 (2011).
- [101] V. K. Valsalam, J. A. Bednar, and R. Miikkulainen, Constructing good learners using evolved pattern generators, in: *Proceedings of the Genetic and Evolutionary Computation Conference, GECCO-2005*, H.-G. Beyer et al., eds., 11–18, New York: ACM (2005).
- [102] V. K. Valsalam and R. Miikkulainen, Modular neuroevolution for multilegged locomotion, in: Proceedings of the Genetic and Evolutionary Computation Conference GECCO 2008, 265–272, ACM, New York, NY, USA (2008).
- [103] V. K. Valsalam and R. Mikkulainen, Evolving symmetric and modular neural networks for distributed control, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) 2009, 731–738, ACM, New York, NY, USA (2009).