
Genetic C Programming with Probabilistic Evaluation

Jacqueline Christmas
Computer Science department

University of Exeter
J.T.Christmas@exeter.ac.uk

ABSTRACT
We introduce the concept of probabilistic program evalua-
tion, whereby the order in which the statements of a pro-
posed program are executed, and whether individual state-
ments are executed at all, are controlled by probability dis-
tributions associated with each statement. The sufficient
statistics of these probability distributions are mutated as
part of the GP scheme. We demonstrate the method on the
simple problems of swapping two array elements and iden-
tifying the maximum value in an array.

Keywords
Genetic programming; probabilistic algorithms; C

1. INTRODUCTION
We start with the assumption that somewhere within a

potential program are at least some of the building blocks
necessary to achieve a solution and that the proposed prob-
abilistic evaluation method is able to identify them and the
order in which they should be executed.

The fitness of a proposed program in the Genetic Pro-
gram (GP) [2] population is evaluated by executing it mul-
tiple times with different input values and, crucially, differ-
ent random draws from the probability distributions. Us-
ing different input values in each run ensures that the solu-
tion is tested for generality. Different random draws from
the probability distributions results in different instances,
or versions, of the proposed program, until the distributions
have converged on an ordering and selection of statements.

2. THE GP
We explicitly model the programs as language-specific trees

(though not with the degree of constraint imposed by [1])
and interpret these trees as part of the fitness evaluation
process. Each potential program represents a syntactically
correct C program based on the following statement types:
assignment, increment (e.g. x += y), if-then-else, and while

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’15 July 11-15, 2015, Madrid, Spain
c© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3488-4/15/07.

DOI: http://dx.doi.org/10.1145/2739482.2764642

and for loops. At present only integer values and simple
arithmetic (+, -, *, /) and conditions (==, !=, >, >=, <,
<=) are supported. Variables are integers or arrays of in-
tegers and may be constant or updateable. Each potential
program is evaluated as though it was preceded by the fol-
lowing declarations:

int w = 0; const int i0 = 0;
int x = 0; const int i1 = 1;
int y = 0; const int i2 = 2;
int z = 0; const int i3 = 3;
int intList[] = {...}; const int N = ...;

where intList is a fixed-size array containing N values. The
scope of these variables is considered to be global within a
particular program.

2.1 GP process
The number of mutations to each new potential program

is fixed at 10% of the number of statements in the program,
with a minimum of 1; the first is a structural mutation
(statement deletion, replacement, addition, or statement-
specific mutation) and the remainder are changes only to
the probabilistic evaluation distributions. Program depth is
controlled so that only assignment statements can be intro-
duced by mutations at depths greater than zero. This does
not prevent greater depth occurring as a result of crossover.

2.2 Probabilistic evaluation
Each statement has associated with it two probabilistic

elements. The first is a threshold value between 0 and 1
(initialised to 0.5) which controls whether or not the state-
ment is executed. At evaluation time a value is drawn from
the uniform distribution U(0, 1); if the value drawn exceeds
the threshold value then the statement is executed, other-
wise it is not.

The second probabilistic element is the mean and stan-
dard deviation for a Gaussian distribution (N (µ, σ2)) that
determines in which order the statements in a given block
are executed. For a given statement block, random draws
are made from these ordering distributions and the state-
ments are executed (subject to the threshold value described
above) in the order of increasing draw values. For a new
statement block µ is initialised to the line number of the
statement within the block (1, 2, . . . ) and σ to 10.

Each potential program is evaluated in this manner until
either it finishes, or a “runtime” error occurs. In either case
the result of the program is dictated by the value of the
program’s variables at the point of completion.

1371



A mutation to the threshold is made by adding the result
of a draw from the Gaussian distribution N (0.01, 0.2) (the
mean greater than zero gives a slight tendency to switch
statements off), with resulting values outside the range 0
to 1 limited to 0 and 1 as appropriate. A mutation to the
evaluation order distribution, N (µ, σ2), is made by adding
draws from the Gaussian distributions N (0, 5) and N (0, 1)
respectively to µ and σ.

2.3 Fitness function
Since we are looking for a generalised solution, not one

that is specific to a single test case, we want to test a po-
tential solution against multiple test cases. We also want
to test multiple different versions of the potential program,
each generated by a different set of draws from the proba-
bility distributions associated with each statement. If the
potential program contains the necessary statements, the
more versions we test the more likely we are to come upon
a version that is able to solve the problem at hand. We
combine these two requirements by generating T test cases
and then evaluating each test case using a different version
of the potential program. The test cases are the same for all
potential programs in a single run of the GP.

The fitness is dependent on three criteria: the number of
test cases correctly processed (to be maximised), the num-
ber of runtime errors and the number of program statements
(both to be minimised). We might also wish to reward par-
tial solutions.

Replacing members of the GP population with new pro-
grams that are no worse than them, but which have the
probabilistic evaluation parameters mutated, seems to lead
to better convergence.

3. RESULTS
The GP has so far been tested on two problems: to swap

the contents of the first two elements in an array (which
may be achieved using only assigment statements) and to
find the max imum value in an array (which requires the use
of a loop and an if statement). Examples of the programs
generated by the GP are shown in figure 2.

For the swap program the GP was run 100 times, each for
100,000 iterations, for each possible combination of three
run criteria:

1. using partial correctness as a fitness criterion (the num-
ber of instances where one or other element in the array
was correct, but not both)

2. using statement execution threshold values

3. using statement ordering distributions

The selection of criteria are described below as a Y/N triple;
thus YNY means that the GP was run with partial correct-
ness and probabilistic ordering, but no use of the thresholds
to decide whether or not individual statements are to be ex-
ecuted. Table 1 shows a summary of results for each of the
100 test runs for each of the 8 possible criteria combinations.

With no partial correctness and no probabilistic evalua-
tion, only 3% of the test runs result in programs that are
able to perform the swap in all test cases; in 88% of cases
no correct solutions were found at all. Including any one of
the run criteria (cases NNY, NYN and YNN) dramatically
reduce the latter.

Figure 1 shows statement ordering probability distribu-
tions for one successful and one unsuccessful swap program.

test % full % zero % average
criteria solutions solutions errors stmts
NNN 3 88 2 33
NNY 87 4 50 63
NYN 70 18 14 24
NYY 87 6 13 18
YNN 16 2 6 26
YNY 48 2 20 44
YYN 51 1 10 20
YYY 63 2 8 25

Table 1 Comparison of results for swap for 100 test runs for each
of the 8 possible criteria combinations. For those test runs that
result in correct programs, column 4 is the proportion of test
cases where the program ends with an error, and column 5 is the
average number of program statements in each program.

0 0.02 0.04 0.06 0.08 0.1

−100

−50

0

50

100

probability

o
rd

e
r 

v
a

lu
e

x = intList[y];

intList[i0] = intList[i1];

intList[i1] = x;

0 0.05 0.1

−60

−40

−20

0

20

40

probability

o
rd

e
r 

v
a
lu

e

Figure 1 Swap programs: the statement order probability distri-
butions for (left) a successful solution and (right) an unsuccessful
solution. The solution has converged on a set of distinct distri-
butions, while the non-solution has not.

The distributions are distinct in the successful case, but it
is clear that there is no meaningful separation in the unsuc-
cessful case and different versions of the program will result
in different orderings of the statements.

4. CONCLUSIONS
The threshold that dictates the probability of a partic-

ular statement being executed might usefully be replaced
with a Beta distribution, which would indicate some level of
certainty in the decision.

5. REFERENCES
[1] T. Castle. Evolving high-level imperative program trees

with genetic programming. PhD thesis, University of
Kent, 2012.

[2] J. Koza. Genetic Programming: On the Programming
of Computers by Means of Natural Selection. MIT
Press, Cambridge, MA, USA, 1992.

x = intList[i1];
intList[i1] = intList[z];
intList[w] = x;

for (z = w * i2;i3 >= w - z;z += i2 / i2)
{ while (intList[z] > x)

{ x = intList[z]; } }

Figure 2 Example correct (top) swap and (bottom) max programs
generated by the GP.

1372




