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ABSTRACT

This paper expands on the research presented in [2] by com-
paring the performance of genetically evolved programs op-
erating under dynamic game environments with that of neu-
ral networks with evolved weights. On the genetic program-
ming side, the maximum allowed tree depth was varied in
order to study its effect on the evolutionary process. For
evolution of neural networks, encoding included direct en-
coding of weights and three different L-Systems. Empiri-
cal results show that genetic evolution of neural networks
weights provided better performance under dynamic envi-
ronments when evolved to choose which of several high-level
actions to perform, such as ”defend” or ”attack”. On the
other hand, genetic programming evolved better solutions
for low-level actions, such as ”move left,” ”move right,” or
”accelerate.”Solutions are analyzed in order to explain these
differences.

Categories and Subject Descriptors

•Computing methodologies → Multi-agent planning;

•Computer systems organization→Neural networks;

•Software and its engineering → Software evolution;
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1. INTRODUCTION
Multi-agent systems in competitive environments need to

be able to adapt to varying competition, while at the same
time maintaining some basic approaches in the face of chang-
ing opponents. A good machine learning system for a com-
petitive environment should be able to learn general strate-
gies that apply to all opponents while being able to quickly
modify its behavior when needed. During game playing, a
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good system should be able to modify details of how to best
attack or defend an opponent based on that opponent’s par-
ticular style of play.

Oliveto and Sarges [4] have looked at the effect of looking
at different types of diversity, such as genotype and fitness
value, for this type of problem. For static environments,
while Kitano found L-Systems to outperform direct encod-
ing of weights for evolution of neural networks [3], Siddiqi
and Lucas have found conflicting results [6]. Also for static
environments, Bornhofen and Lattaud have looked at the
effect of different mappings from genotypes to phenotypes
in evolved L-systems, and their ability to store useful infor-
mation in dormant production rules [1].

Davila has empirically compared the efficiency of evolving
neural networks (NN) through direct encoding of weights
versus using L-Systems for multi-agent systems under dy-
namic environments [2] . Results showed that different cod-
ing schema provided different levels of gene expression, and
that these levels affected the ability of the evolutionary pro-
cess to adapt to new conditions while making high-level
game decisions. In the research discussed here, I have ex-
panded on this research to include performance analysis for
genetic programming (GP), and to expand the game situa-
tions to include low-level multi-agent decisions.

2. GENERAL EXPERIMENTAL PARAME-

TERS
The results presented here were obtained for Multi-agent

systems playing a virtual version of a Capture the Flag
game. Solutions were evolved to play against a particu-
lar opponent for 80 generations, then changed to compete
and evolve against a different opponent for 40 generations,
finally returning to the original opponent for 40 generations
more. Systems evolved included neural networks with di-
rect weight encoding, three different types of Lindenmayer
systems, and genetic programming. The full description of
the Capture the Flag environment and the neural networks
used can be found in [2]. The description of the genetic
programming system is included in the next section.

Evolved systems played under two types of competition.
Following the terminology used in [7], high-level decisions
determined which of four pre-determined roles an agent would
take: defending, floating, flexing, or attacking. Extending
on [2], I also evolved systems to perform two different types
of low level decisions. In one of them the agents needed to
learn to approach an object in the playing field. In the sec-
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ond low level task, agents needed to take into consideration
the position and behavior of other agents (i.e. attacking
while being aware of defenders in the opposing team). Dur-
ing these two low-level decision-making, the evolved systems
determined the direction an agent would move in.

3. GP PARAMETERS
Evolved programs could make use of the following prim-

itive operations: add, subtract, multiply, protected divide,
square root, absolute value, sine, cosine, tangent, arcosine,
arcosine, cotangent, maximum, and minimum. Evolution-
ary runs were repeated with maximum tree depths of 4, 10,
and 20. During low level decision making, the output of the
GP was interpreted as the angle in which the agent should
move. For high level tasks, the angle was interpreted as
which direction in the field the agent should take a role in:
defending if pointing towards the far end of its own side of
the field; sweeping if pointing towards the center portion of
its side of the field; flexing if pointing towards the center
portion of the opposing team’s side of the field; and attack-
ing if it was pointing towards the far end of the opposing
team’s side of the field.

4. RESULTS

4.1 Low Level Decisions
GP systems managed to evolve solutions for both types of

low level decision-making problems mentioned above. For
problems where agents needed to approach an object in the
field, GP systems found simple ways to evaluate a path:
compute the cosine to the object given vectors in the x and
y coordinates, and compute the arcosine of that value. GP
systems with maximum tree depth of 4, 10, and 20 levels
managed to find this logic.
For low level tasks that required taking into consideration

the position and behavior of other game objects, evolved
solutions checked to see if the distance to the enemy flag
was bigger than one unit. If it was, it approached the flag;
otherwise it moved towards its side of the field, since it had
the flag in its possession. While the tree for this solution
had a depth of 5, only GP systems that allowed for trees
with depth of 20 managed to evolve this type of code.
NN systems failed to evolve solutions to either of these low

level problems. This failure to evolve NN solutions is not to
say that neural networks are not able to solve this problem,
but only that evolving network weights with the methods
discussed here did not find an appropriate set of weights. In
fact, standard backpropagation [5] is able to find a solution
to the first low level problem discussed here in less than 500
training epochs.

4.2 High Level Decisions
Evolved neural networks outperformed evolved programs

in the high level task described above. L-systems where gene
expression was high, as further detailed in [2], outperformed
both GP and direct-weight-encoding NN. Particularly inter-
esting is the fact that GP systems perform very similarly to
direct encoding NN, and these are both systems where all
genetic information expresses into their corresponding phe-
notypes. Both of these systems adjusted to new opponents
fairly quickly, but without seeming to take much advantage
of previous evolution when returning to a prior opponent,

which is one of the important behaviors of some of the L-
systems used.
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6. CONCLUSIONS
The experiments presented here demonstrate that differ-

ent types of evolutionary processes are optimal for different
types of problems, even within the same domain. GP proved
optimal for problems that required systems to pay attention
to a small and specific set of input variables. GP systems
needed depths twice as big as the optimal solution trees in
order to successfully evolve solutions. Evolved NN proved to
be better in problem that required observing a high number
of input variables. Evolution of NN failed to find solutions
to low level tasks, even though training with backpropaga-
tion was able to find good solutions for the same problems.
This points towards the need for more elaborate types of NN
evolution for those tasks, such as evolution of topologies as
well, or instead, of evolution of weights.
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