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ABSTRACT

We consider noisy optimization and some traditional vari-
ance reduction techniques aimed at improving the conver-
gence rate, namely (i) common random numbers (CRN),
which is relevant for population-based noisy optimization
and (ii) stratified sampling, which is relevant for most noisy
optimization problems. We present artificial models of noise
for which common random numbers are very efficient, and
artificial models of noise for which common random num-
bers are detrimental. We then experiment on a desperately
expensive unit commitment problem. As expected, strati-
fied sampling is never detrimental. Nonetheless, in practice,
common random numbers nonetheless provided, by far, most
of the improvement.
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1. ALGORITHMS

1.1 Different forms of pairing
For each request xn to the objective function oracle, the

algorithm also provides a set Seedn of random seeds; Seedn =
{seedn,1, . . . , seedn,mn

}. Ef(xn, w) is then approximated as
1

mn

∑mn

i=1 f(xn, seedn,i).
One can see in the literature different kinds of pairing.

The simplest one is as follows: all sets of random seeds
are equal for all search points evaluated during the run, i.e.
Seedn is the same for all n. The drawback of this approach
is that it relies on a sample average approximation: the good
news is that the objective function becomes deterministic;
but the approximation of the optimum is only good up to
the relevance of the chosen sample and we can not guarantee
convergence to the real optimum. Variants consider mn in-
creasing and nested sets Seedn, such as ∀(n ∈ N

+, i ≤ mn),
mn+1 ≥ mn and seedn,i = seedn+1,i. A more sophisti-
cated version is that all random seeds are equal inside an
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offspring, but they are changed between offspring (see dis-
cussion above). We will test this, as an intermediate step
between CRN and no pairing at all. In Section 1.2, we ex-
plain on an illustrative example why in some cases, pairing
can be detrimental. It might therefore make sense to have
partial pairing. In order to have the best of both worlds, we
propose in Section 1.3 an algorithm for switching smoothly
from full pairing to no pairing at all.

1.2 Why common random numbers can be detri-
mental

The phenomenon by which common random numbers can
improve convergence rates is well understood; correlating
the noise between several points tends to transform the noise
into a constant additive term, which has therefore less im-
pact - a perfectly constant additive term has (for most al-
gorithms) no impact on the run. Setting α = 1 in Eq. 1
(below), modelizing an objective function, provides an ex-
ample in which pairing totally cancels the noise.

f(x,w) = ||x||2 + αw
′ + 20(1− α)w′′ · x (1)

We here explain why CRN can be detrimental on a simple
illustrative example. Let us assume (toy example) that

• We evaluate an investment policy on a wind farm.

• A key parameter is the orientation of the wind tur-
bines.

• A crucial part of the noise is the orientation of wind.

• We evaluate 30 different individuals per generation,
which are 30 different policies - each individual (policy)
has a dominant orientation.

• Each policy is evaluated on 50 different simulated wind
events.

With CRN: If the wind orientation (which is randomized)
was on average more East than it would be on expectation,
then, in case of pairing (i.e. CRN), this “East orientation
bias” is the same for all evaluated policies. As a consequence,
the selected individuals are more East-oriented. The next
iterate is therefore biased toward East-oriented.

Without CRN: Even if the wind orientation is too much
East for the simulated wind events for individual 1, such a
bias is unlikely to occur for all individuals. Therefore, some
individuals will be selected with a East orientation bias, but
others with a West orientation bias or other biases. As a
conclusion, the next iterate will incur an average of many
uncorrelated random biases, which is therefore less biased.
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1.3 Proposed intermediate algorithm
We have seen that pairing can be efficient or detrimental

depending on the problem. We will here propose an in-
termediate algorithm (Algorithm 1), somewhere in between
the paired case (g(r) = r) and the totally unpaired case
(g(r) >> r).

Algorithm 1 One iteration of a population-based noisy op-
timization algorithm with pairing.

Require: A population-based noisy optimization algorithm
(in particular, rule for generating offspring)

Require: n: current iteration number
Require: r ∈ N

+: a resampling rule
Require: λ: a population size
Require: g : N+ → N

+: a non-decreasing mapping such
that g(r) ≥ r

1: Generate λ individuals i1, . . . , iλ to be evaluated at this
iteration

2: Compute the resampling number r by the resampling
rule

3: Generate Pr,g(r) = (wr,1, . . . , wr,g(r)) a set of g(r) ran-
dom seeds (we will see below different rules)

4: Each of these λ individuals is evaluated r times with
r distinct random seeds randomly drawn in the family
Pr,g(r).

The Pr,g(r) can be

• Nested, i.e. ∀(i, r), g(r) ≥ i ⇒ wr,i = wr+1,i. The
(wr,i)i≤g(r) for a fixed r are then independent.

• Independent, i.e. all the wr,i are randomly indepen-
dently identically drawn.

SAA is equivalent to the nested case with n 7→ r(n) con-
stant, i.e. we always use the same set of random seeds. [1]
corresponds to the nested case. Classical CRN consists in
g(r) = r and independent sampling.

We will design, in Section 2, an artificial testbed which
smoothly (parametrically depending on α in Eq. 1) switches

• from an ideal case for pairing (testbed in which pairing
cancels the noise, as α = 1 in Eq. 1);

• to worst case for pairing (counterexample as illustrated
above, Section 1.2).

and which (depending on g(·)) switches from fully paired
to fully independent. We will compare stratified sampling
and paired sampling on this artificial testbed. Later, we will
consider a realistic application (Section 3).

2. ARTIFICIAL EXPERIMENTS
All experiments are reported to the extended version of

the present paper.

3. REAL WORLD EXPERIMENTS
All experiments are reported to the extended version of

the present paper.

4. CONCLUSIONS
We tested, in an artificial test case and a Direct Policy

Search problem in power management, paired optimization
(a.k.a common random numbers) and partial variants of it.
We also tested stratified sampling. Both algorithms are easy
to implement, “almost” black-box and applicable for most
applications. Paired optimization is unstable; it can be ef-
ficient in simple cases, but detrimental with more difficult
models of noise, as shown by results on α = 1 (positive ef-
fect) and α = 0 (negative effect) in the artificial case (Eq.
1). We provided illustrative examples of such a detrimental
effect (Section 1.2). Stratification had sometimes a positive
effect on the artificial test case and was never detrimental.
Nonetheless, on the realistic problem, pairing provided a
great improvement, much more than stratification. Pairing
and stratification are not totally black box; however, imple-
menting stratification and pairing is usually easy and fast
and we could do it easily on our realistic problem. We tested
an intermediate algorithm with a parameter for switching
smoothly from fully paired noisy optimization to totally un-
paired noisy optimization. However, this parametrized algo-
rithm (intermediate values of β) was not clearly better than
the fully unpaired algorithm (β = ∞). It was not more
robust in the case α = 0, unless β is so large that there
is essentially no pairing at all. As a conclusion, we firmly
recommend common random numbers for population-based
noisy optimization. Realistic counter-examples to CRN’s ef-
ficiency would be welcome - we had such detrimental effects
only in artificially built counter-example. There are prob-
ably cases (e.g. problems with rare critical cases) in which
stratification also helps a lot, though this was not established
in our application (which does not have natural strata).
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