
Optimizing Performance of L1 Cache Memory for
Embedded Systems driven by Differential Evolution

Josefa Díaz Álvarez[1]
mjdiaz@unex.es

J. Manuel Colmenar[2]
josemanuel.colmenar@urjc.es

José L. Risco-Martín[3]
jlrisco@dacya.ucm.es

Juan Lanchares[3]
julandan@dacya.ucm.es

Oscar Garnica[3]
ogarnica@dacya.ucm.es

[1]Centro Univ. Mérida, Univ. de Extremadura, 06800 Mérida, Spain

[2]Dept. of Computer Science and Statistics, Univ. Rey Juan Carlos, 28933 Móstoles, Spain

[3]Department of Computer Architecture and Automation, Univ. Complutense de Madrid, 28040 Madrid, Spain

ABSTRACT
Embedded systems, mainly battery-powered, must guaran-
tee low power consumption and good performance. The
cache memory design is crucial in embedded systems. Given
the high number of parameters and their ranges of values,
the exhaustive exploration of resulting solution space is an
unaffordable task.

1. INTRODUCTION
Microprocessors of current portable devices include cache

memory, which is one of the most energy-consuming com-
ponents (20%-30% of the total power of the chip). In fact,
the design of the cache memory considerably influences on
the performance and the energy consumption and it is de-
termined by the values of its parameters. Moreover, applica-
tions present different memory access patterns and require
customized cache configurations to meet good performance
and low energy consumption needs.

We have designed an optimization process based on Diffe-
rential Evolution (DE) [1] to identify the best cache confi-
guration for a set of applications.

We optimize both instructions and data cache, together
without adding extra hardware complexity. The design space
involves cache parameters such as cache size, block size and
associativity for both caches; replacement algorithm and
prefetch algorithm for instructions cache and write policy
for data cache.

2. PERFORMANCE & ENERGY MODELS
We choose the performance and energy model detailed

in [2] to measure cache behavior and the ARM9 processor
family as our target platform. We consider our system con-
nected to an embedded DRAM memory and with only one

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’15 July 11-15, 2015, Madrid, Spain
c© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3488-4/15/07.

DOI: http://dx.doi.org/10.1145/2739482.2764635

cache level where the instructions cache is read-only.
The cache performance and energy models are driven by

Eq. (1) and Eq. 2, respectively. We addressed memory cache
operations and CPU power is not taking into account.

T =(Ia × Iat) + (Im × Rat) + (Im × Ils ×
1

Rb

) +

(Da × Dat) + (Dm × Rat) + (Dm × Dls ×
1

Rb

) (1)

E =(Ia × Iae) + (Da × Dae) + (Im × Iae × Ils) +

(Dm × Dae × Dls + Im × Rap) +

(Rat + Ils ×
1

Rb

) + (Dm × Rap + Rat + Dls ×
1

Rb

) (2)

3. OPTIMIZATION METHODOLOGY

Application
Traces

Cacti

Access Time
&

 Energy / access

Application ProfilingCache Characterization

Hits
Misses

MediaBench
Applications

Cache
Parameters

Dinero IV

Trimaran
ARM

Application
Evaluation

Benchmarks
Evaluation

Differential
Evolution

I- and D-Cache
 Configuration

OPTIMAL Cache
Configuration

(I-Cache & D-Cache)

Start

Energy &
Execution Time

for benchmarks set

First Phase

Second Phase

Figure 1: Processes involved in the cache configura-
tion optimization.

The optimization process in Figure 1 consists of two phases,
the first phase is in charge of obtaining cache characteriza-
tion and program traces and must be run just once. Cache
characterization uses the analytical model Cacti (32nm), to

1383

compute DRAM and cache access time and dynamic energy
consumed; Program traces is carried out by Trimaran and
SimpleScalar to compile all memory access of target ap-
plications. The second phase driven by the DE algorithm
(DE/rand), which works well in continuous spaces. DE has
been customized with the following parameters: No. of ex-
ecutions: 30, No. of generations (gM): 100, Population size
(NP): 25, Recombination Factor (RF): 0.3 and Mutation
Factor (F): 0.5.

DE explores the search space of cache configurations and
for each individual, the cache simulator is called to obtain
the number of hits and misses. Then, execution time and
energy consumption is computed for the current cache con-
figuration and all the applications. Then, the fitness value
is computed according to Eq. (3). After gM generations,
DE obtains an optimized cache configuration, the one that
minimizes the fitness for the target applications.

f(ci) = 0.5 ×
T (ci)

T (Baseline)
+ 0.5 ×

E(ci)

E(Baseline)
(3)

In this way, T (ci), E(ci) are the sum of the execution times
and the sum of the energy consumptions over the whole set
of applications obtained under the current configuration, ci.

Cache Memory

Instruction Cache Data Cache

Write Policy

COPY-BACK WRITE-TROUGH

Block Size

8 16 32 64
Prefetch Alg.

MISS ON-DEMAND ALWAYS

Associativity

 1 2 4 8 16 32 64 128

Replacement
Algorithm

 LRU FIFO RANDOM

Size

512 1K 2K 4K 8K 16K 32K 64K

Instructions Cache Data Cache

1 0 0 0 0 2 1 2 1 2 0

Instructions Cache Data Cache

1KB 8B 1 ways LRU MISS-PREFETCH 2KB 16B 4ways FIFO ALWAYS COPY-BACK

Figure 2: Upper: cache subsystem description and
cache parameters values. Bottom: cache configura-
tion, the upper table is the integer vector (genotype)
codified to DE algorithm. The bottom table repre-
sents the actual cache parameters once decoded.

Thus, according to the search space in Figure 2 (upper),
an individual will be decoded as the cache configuration as
shown in Figure 2 (bottom).

4. EXPERIMENTAL RESULTS
We applied our heuristic approach to a subset of Media-

bench benchmarks (JPEG, MPEG, GSM, PEGWIT, EPIC
and ADPCM). Every one has been simulated a maximum of
7.5 × 107 instructions to prevent the capture of a partial or
phase behavior. On the other hand, our algorithm has been
run 30 times, in order to reduce the probability of falling
into a local optimum.

We selected a baseline configuration that is similar to the
cache of the first core in the GP2X portable game console.

For each run, DE algorithm evaluates all target applica-
tions for each individual and returns the best one, with rep-
resents a cache configuration that improves energy consump-
tion and performance for the whole set of applications. Fig-
ure 3 shows the experimental results.

0 3 6 9 12 15 18 21 24 27 30

56

57

58

59

60

61

62

63

64

60.69

56.72

60.16
59.69

60.69

61.92
61.48 61.65

62.5 62.5

Max. Avg. Min.

Im
pr

ov
e

m
e

nt
 P

er
ce

n
t a

g
e

Figure 3: Minimum, maximum and average im-
provement value for 100 generations and 30 runs
obtained by DE for the set of benchmarks.

< 0 1 – 5 10 – 15 15 – 20 20 – 25 25 – 30 30 – 35 35 – 40 40 – 45 45 – 50 50 – 55 55 – 60 60 – 62.50

0

500

1000

1500

2000

2500

3000

3500
3056

364

955
691

969
1088

1601

2010 1945

2455

2013
1884

321

8618 cache configurations > 40%
improvement and 13317 > 25%.

Cache configurations with
worse percentage

Figure 4: Improvement percentages of fitness values
for 30 runs of DE algorithm for Mediabench bench-
marks over to baseline configuration. The x-axis
represents improvement percentage ranges, while
the y-axis is the number of different solutions for
each interval. The red bar represents solutions that
get worse fitness values than the baseline.

5. CONCLUSIONS AND FUTURE WORK
The algorithm is able to find a cache configuration that

improves more than 62.5% the chosen baseline for appli-
cations selected. Moreover, different cache configurations
share this improvement percentage and an improvement per-
centage higher than 50% has been got by 22% of cache con-
figurations evaluated.

Acknowledgment
This work has been supported by Ministry of economy and
competitiveness under project uex:ephemech: Bio-inspired
algorithms in ephemeral environments, TIN2014-56494-C4-
2-P.

6. REFERENCES
[1] R. Storn, K. Price, Differential evolution-a simple and

efficient adaptive scheme for global optimization over
continuous spaces, ICSI Berkeley, 1995.

[2] A. Janapsatya, A. Ignjatovic, S. Parameswaran,
Finding optimal L1 cache configuration for embedded
systems, in: Design Automation, 2006. Asia and South
Pacific Conference on, 2006, p. 6 pp.
doi:10.1109/ASPDAC.2006.1594783.

1384

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20150508120224
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Down
 23.8320
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 2
 1
 2

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20150508120224
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Left
 7.2000
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 2
 1
 2

 1

 HistoryList_V1
 qi2base

