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ABSTRACT
Embedded systems, mainly battery-powered, must guaran-
tee low power consumption and good performance. The
cache memory design is crucial in embedded systems. Given
the high number of parameters and their ranges of values,
the exhaustive exploration of resulting solution space is an
unaffordable task.

1. INTRODUCTION
Microprocessors of current portable devices include cache

memory, which is one of the most energy-consuming com-
ponents (20%-30% of the total power of the chip). In fact,
the design of the cache memory considerably influences on
the performance and the energy consumption and it is de-
termined by the values of its parameters. Moreover, applica-
tions present different memory access patterns and require
customized cache configurations to meet good performance
and low energy consumption needs.

We have designed an optimization process based on Diffe-
rential Evolution (DE) [1] to identify the best cache confi-
guration for a set of applications.

We optimize both instructions and data cache, together
without adding extra hardware complexity. The design space
involves cache parameters such as cache size, block size and
associativity for both caches; replacement algorithm and
prefetch algorithm for instructions cache and write policy
for data cache.

2. PERFORMANCE & ENERGY MODELS
We choose the performance and energy model detailed

in [2] to measure cache behavior and the ARM9 processor
family as our target platform. We consider our system con-
nected to an embedded DRAM memory and with only one
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cache level where the instructions cache is read-only.
The cache performance and energy models are driven by

Eq. (1) and Eq. 2, respectively. We addressed memory cache
operations and CPU power is not taking into account.

T =(Ia × Iat) + (Im × Rat) + (Im × Ils ×
1

Rb

) +

(Da × Dat) + (Dm × Rat) + (Dm × Dls ×
1

Rb

) (1)

E =(Ia × Iae) + (Da × Dae) + (Im × Iae × Ils) +

(Dm × Dae × Dls + Im × Rap) +

(Rat + Ils ×
1

Rb

) + (Dm × Rap + Rat + Dls ×
1

Rb

) (2)

3. OPTIMIZATION METHODOLOGY
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Figure 1: Processes involved in the cache configura-
tion optimization.

The optimization process in Figure 1 consists of two phases,
the first phase is in charge of obtaining cache characteriza-
tion and program traces and must be run just once. Cache
characterization uses the analytical model Cacti (32nm), to
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compute DRAM and cache access time and dynamic energy
consumed; Program traces is carried out by Trimaran and
SimpleScalar to compile all memory access of target ap-
plications. The second phase driven by the DE algorithm
(DE/rand), which works well in continuous spaces. DE has
been customized with the following parameters: No. of ex-
ecutions: 30, No. of generations (gM ): 100, Population size
(NP): 25, Recombination Factor (RF): 0.3 and Mutation
Factor (F): 0.5.

DE explores the search space of cache configurations and
for each individual, the cache simulator is called to obtain
the number of hits and misses. Then, execution time and
energy consumption is computed for the current cache con-
figuration and all the applications. Then, the fitness value
is computed according to Eq. (3). After gM generations,
DE obtains an optimized cache configuration, the one that
minimizes the fitness for the target applications.

f(ci) = 0.5 ×
T (ci)

T (Baseline)
+ 0.5 ×

E(ci)

E(Baseline)
(3)

In this way, T (ci), E(ci) are the sum of the execution times
and the sum of the energy consumptions over the whole set
of applications obtained under the current configuration, ci.
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Figure 2: Upper: cache subsystem description and
cache parameters values. Bottom: cache configura-
tion, the upper table is the integer vector (genotype)
codified to DE algorithm. The bottom table repre-
sents the actual cache parameters once decoded.

Thus, according to the search space in Figure 2 (upper),
an individual will be decoded as the cache configuration as
shown in Figure 2 (bottom).

4. EXPERIMENTAL RESULTS
We applied our heuristic approach to a subset of Media-

bench benchmarks (JPEG, MPEG, GSM, PEGWIT, EPIC
and ADPCM). Every one has been simulated a maximum of
7.5 × 107 instructions to prevent the capture of a partial or
phase behavior. On the other hand, our algorithm has been
run 30 times, in order to reduce the probability of falling
into a local optimum.

We selected a baseline configuration that is similar to the
cache of the first core in the GP2X portable game console.

For each run, DE algorithm evaluates all target applica-
tions for each individual and returns the best one, with rep-
resents a cache configuration that improves energy consump-
tion and performance for the whole set of applications. Fig-
ure 3 shows the experimental results.

0 3 6 9 12 15 18 21 24 27 30

56

57

58

59

60

61

62

63

64

60.69

56.72

60.16
59.69

60.69

61.92
61.48 61.65

62.5 62.5

Max. Avg. Min.

Im
pr

ov
e

m
e

nt
 P

er
ce

n
t a

g
e

Figure 3: Minimum, maximum and average im-
provement value for 100 generations and 30 runs
obtained by DE for the set of benchmarks.
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Figure 4: Improvement percentages of fitness values
for 30 runs of DE algorithm for Mediabench bench-
marks over to baseline configuration. The x-axis
represents improvement percentage ranges, while
the y-axis is the number of different solutions for
each interval. The red bar represents solutions that
get worse fitness values than the baseline.

5. CONCLUSIONS AND FUTURE WORK
The algorithm is able to find a cache configuration that

improves more than 62.5% the chosen baseline for appli-
cations selected. Moreover, different cache configurations
share this improvement percentage and an improvement per-
centage higher than 50% has been got by 22% of cache con-
figurations evaluated.
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