
A Multi-objective Evolutionary Algorithm for Rule-based
Performance Optimization at Software Architecture Level

Xin Du
Faculty of software

Fujian Normal University
Fuzhou, China

School of Computer Science
The University of Birmingham

Birmingham, UK
xindu79@126.com

Youcong Ni
Faculty of software

Fujian Normal University
Fuzhou, China

youcongni@foxmail.com

Peng Ye
College of Mathematics and

Computer
Wuhan Textile University

Wuhan, China
yepeng@wtu.edu.cn

1. INTRODUCTION
Architecture-based software performance optimization can not
only significantly save time but also reduce cost. At present,
researchers have proposed rule-based and metaheuristic-based
approaches. Metaheuristic-based approaches can only explore a
few of architectural parameters, such as component allocation,
hardware configuration, and component selection. Moreover, the
majorities of metaheuristic-based approaches do not consider how
to apply architecture-based software performance improvement
knowledge in the evolutionary optimization process. However, the
existing rule-based approaches may only explore a limited region
of the improvement space because they do not fully take the
uncertainty of the count and order of each rule usage into account.
As a result, the search space for performance improvement is
limited so that the optimal solution is hard to find out. Aiming to
the problem, we have proposed an evolutionary algorithm for rule-
based performance optimization at software architecture (SA) level
named EA4PO. In EA4PO, response time and the count of rules
usage with improvement effect have been combined into a single
objective by means of weighting. But there are two drawbacks
in EA4PO. One is that the value of weight is determined by
experiments. Another is that EA4PO can just obtain one optimal
solution. In fact, software architect wants a set of trade-off
candidates more. In order to improve the performance of EA4PO
algorithm, a multi-objective evolutionary algorithm for rule-based
performance optimization at SA level named MOEA4PO is
proposed in this paper. In MOEA4PO, response time and the
count of rule usage with improvement effect are considered as two
objectives. An individual is encoded as a sequence of rule number.
An adaptive mutation operator is designed to guide the search
direction by fully considering heuristic information of rule usage
during the evolution. A well-known non-dominated sorting
genetic algorithm II (NSGA II) is chosen as the main framework.
Case study shows that MOEA4PO can obtain better results than
EA4PO [1] and a typical rule-based approach [2].

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems-modelling techniques; D.2.8 [Software Engineering]:
Metrics-performance measure; D.2.11 [Software Engineering]:
Software Architecture

Keywords
Performance analysis; performance optimization algorithm;
evolutionary algorithm; software architecture

2. BACKGROUND
Rule Sequence Execution Framework (RSEF) we proposed [1]
can support the execution of rule sequence. In RSEF, the initial
SA and the sequence of rule number are inputs. The outputs of
RSEF are the response time of system before and after the
execution of rule sequence, and the information table of rule
usage in sequence, which can be used to compute the count of
rule usage with improvement effect in a sequence.

3. MOEA4PO ALGORITHM
3.1 Individual encoding
The performance improvement rules are sequentially numbered
from 1 to n, and each rule has its maximal usage times. The rule
numbered by 0 is introduced to represent the do-nothing rule and
has no effect on the performance improvement of system. The
maximal usage times of rule 0 are equal to the sum of maximal
usage times of the rules numbered by non-zero.
An individual X is encoded as a sequence of rule number with
fixed-length integer. The length of X is equal to the maximal
usage times of the rule numbered by 0. The rule number in X has
two constraints. One is that the value of each gene in X varies
from 0 to n. Another is that the actual occurrence times of each
rule number in X should be less than or equal to maximal usage
times of corresponding rule.
The aim of introducing rule number 0 is to ensure that each rule
number in X can comply with the two constraints mentioned
above and get the shorter sequence of rule numbers.

3.2 The objective functions
There are two objective functions. One is to obtain the final
response time of the system based on individual X, which can be
got directly by RSEF. Another is to compute the count of rules
usage with improvement effect in individual X, which is
computed using the information table of rule usage in sequence
obtained by RSEF. The count of rules usage with improvement
effect can indirectly represent the cumulative cost during the
optimization, which is just to allow cost to be considered. The
optimization objective is to minimize the response time of
system and the count of rules usage with improvement effect.

3.3 Crossover operator
One-point crossover with constraint checking and repairing is
adopted. And it includes three computational steps: crossover,
constraint checking and repairing. First, two intermediate
individuals are generated by crossover operator. Then, the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s). Copyright is
held by the author/owner(s).
GECCO’15 COMPANION, JULY 11–15, 2015, MADRID, SPAIN.
ACM 978-1-4503-3488-4/15/07.
HTTP://DX.DOI.ORG/10.1145/2739482.2764705

1385

constraint checking is done on two intermediate individuals to
verify whether each gene from the crossover position to the last
position satisfies the constraint defined in section 3.1. Finally,
repairing step will be done for those genes which disobey the
constraint and assign 0 to them.

3.4 Adaptive mutation operator
The mutation operator has a great influence on the convergence
rate of evolutionary algorithm. Here, the adaptive mutation
operator with learning tactics is introduced to guide the search
direction of algorithm. Each gene mutates according to the
conditional mutation probabilities

1(|)j jp x k x q that are

computed from the statistical information of rule usage during
the evolution, where j is the mutation position, k and q are rule
number at jth and (j-1)th positions.

 The mutation operator in MOEA4PO algorithm is also
composed of three computational steps: mutate, constraint
checking and repairing. The constraint checking and repairing
are same as crossover operator.

4. CASE STUDY
In order to validate the effectiveness of MOEA4PO algorithm,
web application (WebApp) [2] is selected as the experimental
case to compare MOEA4PO algorithm with EA4PO algorithm
[1] and Xu’s DFS algorithm [2] . The EA4PO and DFS
algorithms are applied to the WebApp case for obtaining the
shortest response time. And corresponding parameters setting
are given in [1]. The response time and the count of rule usage
with improvement effect obtained by DFS are 29.88 ms and 8
respectively. The average response time and the count of rule
usage with improvement effect obtained by EA4PO algorithm
are 26.50ms and 7. Experimental results show that EA4PO
algorithm can obtain better system response time and utilize
fewer rules than Xu’s DFS algorithm.

To fairly compare MOEA4PO and EA4PO algorithms, the
setting of parameters is same in them. Similar to EA4PO
algorithm, MOEA4PO algorithm was independently executed
20 times. And a set of average response time are computed with
regard to different count of rule usage with improvement effect.
They can be represented by different points and depicted in
Figure 1. There are three kinds of different points. The first
category, represented by circle points, is possibly excluded by
DFS algorithm because of the confined search space. And it is
difficult for EA4PO to find these solutions. The circle point
indicates the response time of 22. 2ms obtained by MOEA4PO.
It is better than the resulting response time obtained by EA4PO
and DFS algorithms. The second category is composed of the
two triangle points. The one point (26.32ms, 7) indicates that
MOEA4PO is superior to EA4PO and DFS algorithms with
regard to the response time and the count of rule usage with
improvement. Another point (24.37ms, 8) shows that
MOEA4PO is better than DFS. The rest points are square points.
These solutions corresponding to square points can be used to
compromise between the response time and the count of rule
usage with improvement effect by software architect.

One of the primary reasons for such good results is that
MOEA4PO algorithm always searches for a non-dominated set,
rather than a single object which is combined response time with
count of rules usage with improvement effect by means of
weighing. As a result, MOEA4PO algorithm is more likely to

explore widely in the search landscape. This also explains why
MOEA4PO algorithm outperforms EA4PO algorithm.

Figure 1. The average resulting response time and the count

of rule usage with improvement effect obtained by
MOEA4PO algorithm

5. CONCLUSION

The existing rule-based performance optimization approaches at
software architecture level may only explore a limited region of
the improvement space because they do not fully take the
uncertainty of the count and order of each rule usage into
account. Aiming at this problem, MOEA4PO algorithm is
proposed to find the better solution by improving our previous
EA4PO algorithm. The two factors of response time and the
count of rules usage with improvement effect in EA4PO
algorithm are considered as two objectives in MOEA4PO
algorithm. Experimental results show that the more diverse
solutions can be obtained in MOEA4PO by exploring the larger
search space. Some solutions with better response time are
difficult to be found by EA4PO algorithm. The other solutions
indicate that MOEA4PO algorithm is superior to EA4PO and
DFS algorithms with regard to the response time and the count
of rule usage with improvement. These solutions obtained by
MOEA4PO algorithm can support software architect to get
trade-off candidates.

In the future, we will introduce cost function to evaluate the
cumulative cost for the modification of SA caused by application
of performance improvement solution. Furthermore, we will
modify MOEA4PO algorithm by considering response time and
cost as two objectives.

6. ACKNOWLEDGMENTS
This work is supported by the National Natural Science
Foundation of China (No. 61305079, 61370078), the Natural
Science of Fujian Province (No. 2015J01235), the open fund of
State Key Laboratory of Software Engineering (No. SKLSE
2014-10-02).

7. References
[1] X. Du, Y. C. Ni, P. Ye, X. Yao, L. L. Minku, An

Evolutionary Algorithm for Performance Optimization at
Software Architecture. CEC, 2015.

[2] Xu, J., Rule-based automatic software performance diagnosis
and improvement. Performance Evaluation, 2012, 69(11),
pp. 525-550.

26.32

24.37

22.2

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9A
ve
ra
ge

 r
e
sp
o
n
se

ti
m
e

The count of rule usage with …

1386

