
A Multi-objective Evolutionary Algorithm for Rule-based 
Performance Optimization at Software Architecture Level 

Xin Du 
Faculty of software 

Fujian Normal University 
Fuzhou, China 

School of Computer Science 
The University of Birmingham 

Birmingham, UK 
xindu79@126.com 

Youcong Ni 
Faculty of software 

Fujian Normal University 
Fuzhou, China 

youcongni@foxmail.com 

Peng Ye 
College of Mathematics and 

Computer 
Wuhan Textile University 

Wuhan, China 
yepeng@wtu.edu.cn 

 
 

1. INTRODUCTION 
Architecture-based software performance optimization can not 
only significantly save time but also reduce cost. At present, 
researchers have proposed rule-based and metaheuristic-based 
approaches.  Metaheuristic-based approaches can only explore a 
few of architectural parameters, such as component allocation, 
hardware configuration, and component selection. Moreover, the 
majorities of metaheuristic-based approaches do not consider how 
to apply architecture-based software performance improvement 
knowledge in the evolutionary optimization process. However, the 
existing rule-based approaches may only explore a limited region 
of the improvement space because they do not fully take the 
uncertainty of the count and order of each rule usage into account. 
As a result, the search space for performance improvement is 
limited so that the optimal solution is hard to find out. Aiming to 
the problem, we have proposed an evolutionary algorithm for rule-
based performance optimization at software architecture (SA) level 
named EA4PO. In EA4PO, response time and the count of rules 
usage with improvement effect have been combined into a single 
objective by means of weighting. But there are two drawbacks 
in EA4PO. One is that the value of weight is determined by 
experiments. Another is that EA4PO can just obtain one optimal 
solution. In fact, software architect wants a set of trade-off 
candidates more. In order to improve the performance of EA4PO 
algorithm, a multi-objective evolutionary algorithm for rule-based 
performance optimization at SA level named MOEA4PO is 
proposed in this paper. In MOEA4PO, response time and the 
count of rule usage with improvement effect are considered as two 
objectives. An individual is encoded as a sequence of rule number. 
An adaptive mutation operator is designed to guide the search 
direction by fully considering heuristic information of rule usage 
during the evolution. A well-known non-dominated sorting 
genetic algorithm II (NSGA II) is chosen as the main framework. 
Case study shows that MOEA4PO can obtain better results than 
EA4PO [1] and a typical rule-based approach [2]. 

Categories and Subject Descriptors 
C.4 [Computer Systems Organization]: Performance of 
Systems-modelling techniques; D.2.8 [Software Engineering]: 
Metrics-performance measure; D.2.11 [Software Engineering]: 
Software Architecture 
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2. BACKGROUND 
Rule Sequence Execution Framework (RSEF) we proposed [1] 
can support the execution of rule sequence. In RSEF, the initial 
SA and the sequence of rule number are inputs. The outputs of 
RSEF are the response time of system before and after the 
execution of rule sequence, and the information table of rule 
usage in sequence, which can be used to compute the count of 
rule usage with improvement effect in a sequence. 

3. MOEA4PO ALGORITHM 
3.1 Individual encoding 
The performance improvement rules are sequentially numbered 
from 1 to n, and each rule has its maximal usage times. The rule 
numbered by 0 is introduced to represent the do-nothing rule and 
has no effect on the performance improvement of system. The 
maximal usage times of rule 0 are equal to the sum of maximal 
usage times of the rules numbered by non-zero.  
An individual X is encoded as a sequence of rule number with 
fixed-length integer. The length of X is equal to the maximal 
usage times of the rule numbered by 0. The rule number in X has 
two constraints. One is that the value of each gene in X varies 
from 0 to n. Another is that the actual occurrence times of each 
rule number in X should be less than or equal to maximal usage 
times of corresponding rule.   
The aim of introducing rule number 0 is to ensure that each rule 
number in X can comply with the two constraints mentioned 
above and get the shorter sequence of rule numbers.  

3.2 The objective functions  
There are two objective functions. One is to obtain the final 
response time of the system based on individual X, which can be 
got directly by RSEF.  Another is to compute the count of rules 
usage with improvement effect in individual X, which is 
computed using the information table of rule usage in sequence 
obtained by RSEF. The count of rules usage with improvement 
effect can indirectly represent the cumulative cost during the 
optimization, which is just to allow cost to be considered. The 
optimization objective is to minimize the response time of 
system and the count of rules usage with improvement effect. 

3.3 Crossover operator 
One-point crossover with constraint checking and repairing is 
adopted. And it includes three computational steps: crossover, 
constraint checking and repairing. First, two intermediate 
individuals are generated by crossover operator. Then, the 
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constraint checking is done on two intermediate individuals to 
verify whether each gene from the crossover position to the last 
position satisfies the constraint defined in section 3.1. Finally, 
repairing step will be done for those genes which disobey the 
constraint and assign 0 to them. 

3.4 Adaptive mutation operator 
The mutation operator has a great influence on the convergence 
rate of evolutionary algorithm. Here, the adaptive mutation 
operator with learning tactics is introduced to guide the search 
direction of algorithm. Each gene mutates according to the 
conditional mutation probabilities 

1( | )j jp x k x q  that are 

computed from the statistical information of rule usage during 
the evolution, where j is the mutation position, k and q are rule 
number at jth and (j-1)th positions. 

 The mutation operator in MOEA4PO algorithm is also 
composed of three computational steps: mutate, constraint 
checking and repairing. The constraint checking and repairing 
are same as crossover operator. 

4. CASE STUDY 
In order to validate the effectiveness of MOEA4PO algorithm, 
web application (WebApp) [2] is selected as the experimental 
case to compare MOEA4PO algorithm with EA4PO algorithm 
[1] and Xu’s DFS algorithm [2] .  The EA4PO and DFS 
algorithms are applied to the WebApp case for obtaining the 
shortest response time.  And corresponding parameters setting 
are given in [1]. The response time and the count of rule usage 
with improvement effect obtained by DFS are 29.88 ms and 8 
respectively. The average response time and the count of rule 
usage with improvement effect obtained by EA4PO algorithm 
are 26.50ms and 7. Experimental results show that EA4PO 
algorithm can obtain better system response time and utilize 
fewer rules than Xu’s DFS algorithm. 

To fairly compare MOEA4PO and EA4PO algorithms, the 
setting of parameters is same in them. Similar to EA4PO 
algorithm, MOEA4PO algorithm was independently executed 
20 times. And a set of average response time are computed with 
regard to different count of rule usage with improvement effect. 
They can be represented by different points and depicted in 
Figure 1. There are three kinds of different points. The first 
category, represented by circle points, is possibly excluded by 
DFS algorithm because of the confined search space. And it is 
difficult for EA4PO to find these solutions. The circle point 
indicates the response time of 22. 2ms obtained by MOEA4PO. 
It is better than the resulting response time obtained by EA4PO 
and DFS algorithms. The second category is composed of the 
two triangle points. The one point (26.32ms, 7) indicates that 
MOEA4PO is superior to EA4PO and DFS algorithms with 
regard to the response time and the count of rule usage with 
improvement. Another point (24.37ms, 8) shows that 
MOEA4PO is better than DFS. The rest points are square points. 
These solutions corresponding to square points can be used to 
compromise between the response time and the count of rule 
usage with improvement effect by software architect. 

One of the primary reasons for such good results is that 
MOEA4PO algorithm always searches for a non-dominated set, 
rather than a single object which is combined response time with 
count of rules usage with improvement effect by means of 
weighing. As a result, MOEA4PO algorithm is more likely to 

explore widely in the search landscape. This also explains why 
MOEA4PO algorithm outperforms EA4PO algorithm.   

 
 
Figure 1. The average resulting response time and the count 

of rule usage with improvement effect obtained by 
MOEA4PO algorithm 

5. CONCLUSION  

The existing rule-based performance optimization approaches at 
software architecture level may only explore a limited region of 
the improvement space because they do not fully take the 
uncertainty of the count and order of each rule usage into 
account. Aiming at this problem, MOEA4PO algorithm is 
proposed to find the better solution by improving our previous 
EA4PO algorithm. The two factors of response time and the 
count of rules usage with improvement effect in EA4PO 
algorithm are considered as two objectives in MOEA4PO 
algorithm. Experimental results show that the more diverse 
solutions can be obtained in MOEA4PO by exploring the larger 
search space. Some solutions with better response time are 
difficult to be found by EA4PO algorithm. The other solutions 
indicate that MOEA4PO algorithm is superior to EA4PO and 
DFS algorithms with regard to the response time and the count 
of rule usage with improvement. These solutions obtained by 
MOEA4PO algorithm can support software architect to get 
trade-off candidates. 

In the future, we will introduce cost function to evaluate the 
cumulative cost for the modification of SA caused by application 
of performance improvement solution. Furthermore, we will 
modify MOEA4PO algorithm by considering response time and 
cost as two objectives.   
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