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ABSTRACT
A dynamic version of the Inverse Kinematics problem ad-
dresses the two main objectives: One objective is to find
a configuration of joints such that a desired pose and ori-
entation can be reached by a robotic arm. Another one is
to preserve this state in a continuously changing environ-
ment. In this paper a reaching goal in dynamic constrained
Inverse Kinematics is considered where either a target point
to be reached or locations of obstacles or both can change
in time. The Infeasibility Driven Evolutionary Algorithm is
applied for an exploration of the set of possible joint angles
configurations in every moment. Additionally, the anticipa-
tion mechanism based on Auto-Regressive Integrated Mov-
ing Average Model is used in order to speed up an adaptation
process so that a population of candidate solutions can be
directed in advance towards the most probable future global
optima.

1. INTRODUCTION
A robotic arm in the 2-dimensional Inverse Kinematics

(IK) [3] can be parametrized with a single starting point
(xstart, ystart) ∈ R2 and d > 0 tuples (li, α

min
i , αmax

i ) for i =
1, . . . , d, where li ∈ R+ is the length of the i-th segment while
0 ≤ αmin

i < αmax
i ≤ 2π are, respectively, the minimum and

maximum angles achievable by the i-th joint. Due to the
rigidity of robotic arms it is assumed that once the above
parameters are set, any configuration of an arm can be fully
described with a vector of relative angles α = (α1, α2, . . . ,
αd) ∈ Rd where αi ∈ [αmin

i , αmax
i ] for i = 1, . . . , d.

In this paper a reaching goal of such arm in the 2D en-
vironments with moving obstacles and/or a moving target
point is considered. In the proposed approach the above
goal is formulated as the Dynamic Constrained Optimiza-
tion Problem (DCOP) set in the space of all the possible
arm configurations with the restriction that only those ones
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that encode the arms which do not cross any obstacles at
the moment can be treated as feasible whereas all the other
ones are labeled infeasible.

The contribution of this paper is twofold. Firstly, an adap-
tation of the modified Infeasibility Driven Evolutionary Al-
gorithm with the anticipation mechanism based on Auto-
Regressive Integrated Moving Average Model (abbreviated
mIDEA-ARIMA) [2] is proposed. As a result the process of
maintaining the desired pose of a robotic arm is improved
due to predictions of the most probable future landscapes
that allow for acting prior to incoming changes. Secondly,
an additional optimization criterion for minimizing the dis-
placement between joint angles configurations obtained in
the consecutive time steps is introduced. This modification
assures a smooth motion of a robotic arm that otherwise
would be expected to reconfigure itself in an instant in or-
der to catch up with changing locations of global optima.

2. ALGORITHM
The strategy of maintaining a small fraction of good yet

infeasible individuals in the population and minimizing their
violation measure is the key aspect in Infeasibility Driven

Algorithm 1 Pseudo-code of mIDEA-ARIMA for IK

S1 = RandomSamples()
P1 = RandomPopulation()
Evaluate(P1)
for t = 1→ Ngen do

if the function F has changed then
Re-evaluate(Pt)
St = ReduceSamples(St ∪ Pt,M)
Re-evaluate(St \ Pt)
if t− 1 > Ntrain then
P exploit
t = ReducePopulation(Pt, sizeexploit)

Pt = P exploit
t ∪ P anticip

t

end if
end if
Pt+1 = IDEAt(Pt, Nsub)
if t > Ntrain then
s∗t = BestSample(St, F̃

(t+1))
P anticip
t+1 = AnticipatingFraction(s∗t , sizeanticip)

end if
St+1 = St

end for
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Evolutionary Algorithm (IDEA) [4] which plays a role of
the basic search engine in the proposed approach.

A proactive variant of IDEA, named mIDEA-ARIMA,
was introduced in [2]. It applies the anticipation mecha-
nism based on Auto-Regressive Integrated Moving Average
(ARIMA) [1] model in order to predict future values of a
fitness function using past observations.

Algorithm 1 presents the pseudo-code of mIDEA-ARIMA
for IK. In the initialization step it generates a random set
of samples S1 and a random population P1 both of which
have the size of M > 0 individuals. The main loop is run
Ngen > 0 times. Anytime a change in the fitness function
F is detected (e. g. by observing some samples in St), the
population Pt is re-evaluated and joined to St. Then, the set
St is reduced to the initial size of M individuals by removing
the oldest samples. Eventually, the remaining St\Pt samples
are also re-evaluated. In the initial Ntrain > 0 iterations the
anticipation mechanism only collects the data and so it does
not give any output. If t − 1 > Ntrain (which means that
the training period has ended in the previous step and so the
anticipating fraction P anticip

t is now ready), the population

Pt is reduced to the exploiting fraction P exploit
t consisting of

sizeexploit ·M individuals (0 < sizeexploit < 1). The popu-

lation Pt then becomes the union of P exploit
t and P anticip

t .
For each generation t the single step of IDEA is run. When

it ends the ARIMA-based anticipation mechanism is invoked
providing that t > Ntrain. As a result the new anticipating
fraction P anticip

t+1 is produced for the next generation and
then the iteration completes.

3. EXPERIMENTS
The experiments were performed on the three benchmarks

being virtual arenas with the three types of moving obstacles
and/or the target point. Each of the 9 experiments (3 arenas
× 3 motion types: sliding, swinging and zig-zag) lasted for
Ngen = 100 generations (one generation per time tick, t =
1, 2, . . . , 100). For simplicity, all the angle ranges were set
to [0, 2π].

The objective function was the Euclidean distance be-
tween the end effector and the current location of the target
point. Additionally, the following two minimization criteria
were considered — violation measure (i. e. the Euclidean
distance to the nearest feasible solution) and displacement
(i. e. the Euclidean distance to the latest configuration of a
given arm). Individuals with positive violation measures or
displacements exceeding a predefined threshold ηmax ∈ R+

were marked as infeasible.
The suggested mIDEA-ARIMA algorithm was run with

the population of M = 100 individuals out of which 20%
were infeasible (sizeinfeas = 0.2). The 10 variants of the
anticipation fraction size (sizeanticip ∈ {0.1, 0.2, . . . , 1.0})
and the 5 variants of the robotic arm displacement threshold
(ηmax ∈ {1, 2, 3, 4, 5}) were considered. Each t-th step of
the original IDEAt was executed for Nsub = 2 generations.
The training period of the ARIMA-based anticipation mech-
anism took Ntrain = 10 initial iterations of every run.

It turned out that mIDEA-ARIMA outperformed the orig-
inal IDEA in all of the analyzed cases. The smallest differ-
ence between results obtained in these two approaches was
observed in the presence of the sliding motion. The other
two types of motion were evidently easier to deal with. The
difference between results of IDEA and mIDEA-ARIMA was

5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

iteration

b
e
s
t 
e
v
a
lu

a
ti
o
n

 

 

IDEA

mIDEA−ARIMA

(a) ηmax = 1

5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

iteration

b
e
s
t 
e
v
a
lu

a
ti
o
n

 

 

IDEA

mIDEA−ARIMA

(b) ηmax = 3

5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

iteration

b
e
s
t 
e
v
a
lu

a
ti
o
n

 

 

IDEA

mIDEA−ARIMA
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Figure 1: Sample run of the initial 50 generations
of IDEA and mIDEA-ARIMA in the arena with the
swinging type of motion.

significantly greater than in the first case. Neither swinging
motion nor the zig-zag one had any rapid shifts hence they
were more likely to be predicted accurately.

Figure 1 present the objective function values of best fea-
sible individuals during sample runs of the initial 50 gener-
ations of IDEA and mIDEA-ARIMA in the arena with the
swinging type of motion. It is visible that the highest perfor-
mance of the proposed approach was achieved soon after the
training period of the initial 10 generations had completed.

4. CONCLUSIONS & FUTURE WORK
In this paper the adaptation of mIDEA-ARIMA for the

dynamic 2D constrained IK problem was proposed. Also,
the additional optimization criterion for minimizing the dis-
placement between joint angles configurations was intro-
duced to assure the smoothness of a robotic arm motion.

The preliminary experiments demonstrated the superior-
ity of the suggested proactive approach in comparison with
the original IDEA in the examined IK problems. The future
work should cover enlarging the anticipated time horizon
from one step ahead to as many steps ahead as possible.
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