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ABSTRACT
This study exhaustively compares the abilities to solve many-
objective problems of eight representative algorithms from
four different classes (i.e., Pareto-, aggregation-, indicator-,
and diversity-based EMO algorithms). The eight compared
algorithms are tested on four types of well-defined contin-
uous, discontinuous and combinatorial problems, through
three performance metrics as well as a visual observation in
the decision space. We can conclude from the experimental
results that the performance of the eight algorithms differ
not only on the dimensionality of the problems, but also on
the shape and features of the Pareto front. From this it sug-
gests an appropriate choice for researchers and practitioners
when solving many-objective problems.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Problem Solving, Con-
trol Methods, and Search

1. TESTED ALGORITHMS AND PROBLEMS
Eight algorithms are selected from the four classes of many-

objective EMO algorithms. CDAS [1] is from Pareto-based
algorithms. MOEA/D+PBI (MOEA/D with PBI) [2], NSGA-
III [3] and MSOPS [4] are from aggregation-based algo-
rithms. IBEA [5], SMS-EMOA [6] and HypE [7] are from
indicator-based algorithms. and SPEA2+SDE [8] is from
diversity-based algorithms.

We consider four groups of test functions (DTLZ [9], WFG
[10], TSP [11], and Rectangle problems [12]), and two per-
formance metrics(IGD [13] and HV [14]).
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All of the experiments are executed on the optimization
template library (OTL).

2. RESULTS AND ANALYSIS
Specially here, we propose a new approach to generate any

number of weight vectors. The main idea is using two EMO
algorithms to generate well-spread weight vectors. Firstly,
initialize many points. Secondly, we use NSGA-II to opti-
mize DTLZ1 or DTLZ2 without distance function [10] and
iterate it many times. Lastly, the truncation approach of
SPEA2 is employed to truncate these points into any num-
ber of points required. Thus, we can obtain any number of
uniformly distributed vectors for MOEA/D and NSGA-III.

Table 1 gives the IGD values of the eight EMO algorithms
on DTLZ test suite, Table 2 and Table 3 represent the HV
values on WFG and TSP problems, respectively. The values
in each unit are the mean (above dividing line) and standard
deviation (below dividing line). The dark and light gray
represent the best and the second ranked EMO algorithms,
respectively. Figure 1 and Figure 2 represent the final opti-
mal solutions of the eight algorithms on 20-objective DTLZ3
(shown by parallel coordinates) and the four-objective rect-
angle test problem, respectively.

(a) CDAS (b) MOEA/D (c) NSGA-III

(d) MSOPS (e) SMS-EMOA (f) IBEA

(g) HypE (h) SPEA2+SDE
Figure 1: The final solution set of the eight algorithms on
the 20-objective DTLZ3, shown by parallel coordinates.
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Table 1: IGD comparison of the eight EMO algorithms on
DTLZ problem suite
Problem Obj. CDAS MOEA/D NSGA-III MSOPS SMS-EMOA IBEA HypE SPEA2+SDE

DTLZ1 10
1.22E-01

2.32E-03

1.66E+00

1.44E+00

1.17E-01

7.97E-04

2.06E-01

2.36E-02

2.37E-01

1.47E-02

1.46E-01

9.77E-04

8.08E-01

5.27E-01

1.15E-01

2.63E-03

20
1.63E-01

5.34E-03

3.34E-01

1.29E-02

2.16E-01

3.38E-03

2.62E-01

5.63E-03

3.12E-01

1.25E-02

1.79E-01

3.49E-03

2.69E+00

1.95E+00

1.63E-01

4.46E-03

DTLZ2 10
4.63E-01

4.80E-03

7.83E-01

7.70E-03

5.38E-01

8.64E-04

7.93E-01

4.89E-02

6.24E-01

1.54E-02

4.97E-01

2.22E-03

9.64E-01

5.78E-02

5.58E-01

6.31E-03

20
6.82E-01

7.01E-03

9.80E-01

2.49E-02

8.64E-01

1.08E-02

9.41E-01

3.96E-02

9.67E-01

3.19E-02

7.12E-01

8.34E-03

1.15E+00

2.71E-02

7.50E-01

1.69E-02

DTLZ3 10
4.60E-01

4.84E-03

4.50E+01

1.15E+01

8.29E-01

2.76E-01

8.12E-01

4.56E-02

4.32E+01

1.85E+01

1.12E+00

6.23E-01

5.72E+01

5.86E+01

5.86E-01

1.35E-02

20
7.03E-01

9.80E-02

1.42E+01

5.83E+00

9.11E-01

8.26E-02

9.63E-01

2.56E-02

1.56E+01

1.19E+01

1.77E+00

1.28E+00

2.58E+01

1.62E+01

8.09E-01

3.44E-02

DTLZ4 10
4.71E-01

6.06E-03

7.52E-01

2.16E-02

7.80E-01

1.49E-01

7.40E-01

6.08E-02

6.40E-01

4.05E-02

5.16E-01

3.13E-03

1.23E+00

6.78E-02

5.65E-01

2.14E-02

20
7.09E-01

5.10E-03

8.70E-01

1.71E-02

1.18E+00

1.34E-01

1.10E+00

5.14E-02

8.71E-01

1.16E-02

7.54E-01

3.16E-03

1.51E+00

1.30E-01

7.57E-01

7.64E-03

DTLZ5 10
5.47E-02

6.63E-03

5.33E-01

6.71E-02

3.19E-02

4.37E-05

7.02E-02

4.60E-03

4.08E-01

9.99E-02

3.03E-01

3.92E-02

1.15E+00

2.02E-01

1.44E-01

2.71E-02

20
7.82E-02

8.63E-03

7.21E-01

4.74E-02

1.26E-02

6.77E-04

1.96E-02

1.13E-03

7.59E-01

1.15E-01

3.41E-01

5.85E-02

2.26E+00

1.52E-01

1.59E-01

3.61E-02

DTLZ6 10
2.81E-01

7.80E-03

2.11E+00

1.34E-01

9.11E-02

2.02E-02

1.50E-01

2.72E-02

2.07E+00

1.21E-01

3.22E+00

4.85E-01

8.15E+00

1.09E+00

2.55E-01

3.24E-02

20
3.24E-01

9.44E-03

4.01E+00

3.51E-01

6.18E-02

1.32E-02

9.11E-02

1.91E-02

5.83E+00

3.33E-01

4.45E+00

5.35E-01

1.01E+01

2.77E-01

2.98E-01

8.70E-02

DTLZ7 10
9.63E-01

1.87E-02

1.16E+00

9.58E-02

3.38E+00

8.48E-01

1.11E+00

1.27E-01

3.29E+00

9.42E-01

4.58E+00

5.64E-01

3.09E+01

4.65E+00

9.97E-01

1.51E-02

20
1.72E+00

3.54E-02

7.54E+00

1.34E+00

8.85E+00

2.25E+00

6.40E+00

1.63E+00

9.80E+00

2.85E-01

4.31E+00

5.97E-01

8.43E+01

1.02E+01

2.04E+00

1.18E-01

Table 2: HV comparison of the eight EMO algorithms on
WFG problem suite
Problem Obj. CDAS HypE IBEA MOEA/D SMS-EMOA MSOPS NSGA-III SPEA2+SDE

WFG1 10
5.91E+09

3.69E+08

5.24E+09

9.18E+07

5.06E+09

5.04E+07

4.09E+09

1.06E+08

5.25E+09

1.97E+08

4.01E+09

4.08E+07

3.50E+09

9.28E+07

5.54E+09

2.27E+08

20
5.52E+24

3.78E+23

4.45E+24

8.29E+22

4.31E+24

4.22E+22

2.91E+24

4.50E+22

4.12E+24

4.07E+23

2.84E+24

3.38E+22

2.48E+24

3.65E+22

5.29E+24

3.58E+23

WFG8 10
6.50E+09

3.47E+08

9.95E+09

1.82E+08

8.46E+09

3.45E+08

2.23E+09

1.41E+09

8.94E+09

5.00E+08

6.08E+09

4.22E+08

6.79E+09

5.56E+08

9.75E+09

1.76E+08

20
2.55E+24

5.83E+23

8.09E+24

5.07E+23

6.24E+24

1.08E+24

6.16E+24

4.17E+23

6.61E+24

7.40E+23

2.42E+24

5.18E+23

4.43E+24

7.19E+23

9.15E+24

4.42E+23

WFG9 10
6.85E+09

2.64E+08

9.48E+09

4.08E+08

7.97E+09

4.36E+08

4.08E+09

1.35E+09

8.00E+09

2.58E+08

6.19E+09

7.64E+08

7.15E+09

4.21E+08

9.07E+09

3.21E+08

20
3.73E+24

4.03E+23

7.77E+24

4.37E+23

5.27E+24

5.65E+23

4.19E+24

4.40E+23

6.55E+24

5.36E+23

2.69E+24

5.59E+23

5.49E+24

3.20E+23

6.95E+24

6.11E+23

2.1 Summary
Based on the experimental results of eight algorithms above,

the summary of performance observation can be given as fol-
lows.

• The Pareto-based algorithm, CDAS performs the best
on DTLZ2, DTLZ3, DTLZ4, DTLZ7, WFG1, and TSP
of three instances and behaves well on DTLZ1, DTLZ5
and rectangle problem, but encounters great difficul-
ties on WFG8 and WFG9.

• Among three aggregation-based algorithms, MOEA/D
performs the worst on almost all DTLZ test problems
except for biased DTLZ4. NSGA-III performs the
best on degenerated DTLZ5 and DTLZ6, and MSOPS
ranks the second on them. However, they all cannot
perform well on WFG and TSP test problems.

• Among the three indicator-based algorithms, IBEA
achieves the best on almost all DTLZ problems except
for 10-objective DTLZ6, DTLZ7, but it encounters dif-
ficulties on WFG1,WFG8, WFG9 and TSP problems.
SMS-EMOA only works well on 10-objective DTLZ6,
DTLZ7. HypE works the best on WFG1, WFG8 and
WFG9, TSP with two instances. This class of algo-
rithms shows good performance on rectangle problem.

• The diversity-based algorithm, SPEA2+SDE performs
well on DTLZ1 and DTLZ7, and it appears to be more
competitive on more difficult problems like WFG and
TSP test suite, rectangle problem.

3. CONCLUSIONS
Our study has revealed that none of the algorithms is able

to solve problems with all different properties. It suggests an
appropriate choice for engineering application. Subsequent
work is to further discuss the computational budget of EMO
algorithms.

Table 3: HV comparison of the eight EMO algorithms on
TSP test problems
Problem Obj. CDAS HypE IBEA MOEA/D SMS-EMOA MSOPS NSGA-III SPEA2+SDE

TSP−0.2 15
9.73E+15

1.19E+15

7.25E+15

9.69E+14

2.50E+15

4.12E+14

4.95E+15

4.43E+14

6.71E+15

1.41E+15

1.41E+15

4.17E+14

6.14E+13

3.90E+13

7.56E+15

7.90E+14

TSP0 15
8.37E+15

9.07E+14

7.84E+15

9.07E+14

3.57E+15

4.60E+14

3.94E+15

4.32E+14

7.33E+15

9.37E+14

1.73E+15

3.75E+14

7.18E+13

3.02E+13

7.35E+15

6.15E+14

TSP0.2 15
7.42E+15

5.09E+14

7.34E+15

5.81E+14

4.06E+15

5.94E+14

3.03E+15

3.72E+14

6.93E+15

6.22E+14

2.12E+15

3.79E+14

1.24E+14

7.14E+13

6.76E+15

4.60E+14

(a) CDAS (b) MOEA/D (c) NSGA-III

(d) MSOPS (e) SMS-EMOA (f) IBEA

(g) HypE (h) SPEA2+SDE
Figure 2: The final solution set of the eight algorithms on
the 4-objective rectangle test problem in two dimensional
decision space.
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