
Enhancing Incremental Ant Colony Algorithm for
Continuous Global Optimization

Udit Kumar, Jayadeva, Sumit Soman
Department of Electrical Engineering, Indian Institute of Technology, Delhi, India

jayadeva@ee.iitd.ac.in

ABSTRACT
We present two enhancements to the local search strategy
for Incremental Ant Colony Algorithm (IACOR), that uses
Multi-Trajectory Local Search (Mtsls1) as the exploitation
engine. First, a new method to handle bound constraints
and a modified architecture for Mtsls1 is proposed. The
second approach involves a parallel architecture for Mtsls1
along each dimension of the function. We evaluate our ap-
proaches on the Soft Computing (SOCO) benchmark func-
tions. The reference approach takes 16% more function eval-
uations on an average. The proposed parallel approach pro-
vides a reduction in the run-time.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Unconstrained
Optimization, Global Optimization

Keywords
Continuous Global Optimization; SOCO; IACOR; Mtsls1.

1. INTRODUCTION
The Incremental ACO (IACOR) framework by Liao et al.

[2] uses IACOR as the exploration engine and Mtsls1 [4]
as the exploitation engine. A probability density function
constructed around the best solutions is used as the starting
point for exploitation. In the case of exploration, all entries
in the solution archive are used to generate new solutions.

We present two variations to the original approach. The
first involves modifying the method to handle bound con-
straints, using a new architecture of Mtsls1 to reduce the
number of function evaluations. Our second approach gives
a parallel flavor to Mtsls1 by optimizing each dimension of
the function in parallel, thereby providing an overall reduc-
tion in the run-time.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’15 July 11-15, 2015, Madrid, Spain
c© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3488-4/15/07.

DOI: http://dx.doi.org/10.1145/2739482.2764661

2. HANDLING BOUND CONSTRAINTS
In [2], the the weight of bound constraints is a linear func-

tion of the number of function evaluations. In our approach,
the penalty function weight is updated at the start of each
iteration of the local search.

xt
2

xt
2

xt
1

xt
1

xt+1
1

xt+1
1

Costt = f1 + B ∗ feval
Costt+1 = f2 + B ∗ (feval + 1)
∆Cost = (f2 − f1) + B

Costt = f1 + B ∗ feval
Costt+1 = f2 + B ∗ feval
∆Cost = f2 − f1

Search Space

Search Space

Linear weight on penalty function

Step-wise weight on penalty function

B

B

P
en

al
ty

fu
n

ct
io

n

Function evaluation

1stloop(LS)

2ndloop(LS)

3rdloop(LS)

Figure 1: Bound constraint handling and its effect on
penalty function weight.

To illustrate the benefits of our approach, consider a 2-D
optimization problem with the local search space as shown
by the region within the squares in Fig. 1. Let xt

1 and xt
2 be

points within and outside the search space, respectively, at
iteration t, and let Costt represent the total cost. The value
of the function at (xt

1, x
t
2) is f1, and the number of function

evaluations is feval. At iteration t+1, suppose that only the

first dimension xt
1 gets updated to x

(t+1)
1 , and the resultant

function value is f2.
The change in cost (∆Cost) would be (f2− f1) + B and

f2− f1 for the original and our approach, respectively. Ef-
fectively, the change in cost obtained in our approach is less
influenced by the penalty function, which prevents it from
dominating over the change in function value.

3. MODIFIED MTSLS1
The Mtsls1 algorithm searches from one dimension to an-

other from an initial point, and moves by a step size of s
along one dimension. This is shown in Fig. 2 as the transi-
tion from point a to point b. Here, xk is the kth dimension
of a point x ∈ Rn, while fx

n is the value of the function f at
x. The updated location of x is denoted by x̂.

In [2], the penalty function changes weight from one di-
mension to the next, requiring a function evaluation every
time. While moving from a to b, the function is re-evaluated,
even though x is the same. In our work, the penalty func-

1417



tion weight remains constant across all dimensions. Hence,
the function re-evaluation at a is not required.

x1 x2 xn

(x̂1, x2.., xn) (x̂1, x̂2.., xn) (x̂1, x̂2.., x̂n)

(x1, x2.., xn) (x̂1, x2.., xn) (x̂1, x̂2.., xn)

fa
1 f b

1f c
1 fa

2 f b
2f c

2 fa
n f b

nf c
n

a a ab b bc c c

Figure 2: Mtsls1 search procedure.

Specifically, [2] requires 2-3 function evaluations along each
dimension, for computing fa

k , fb
k and fc

k at the kth dimen-
sion as in Fig. 2. Our approach requires 1-2 function eval-

uations, fb
2 and fc

2 (when fb
2 > fa

1 ), or fa
2 = f

a/b/c
1 from

the previous iteration depending on the change in the func-
tion value. We term our approach as the IACOR-Modified
Mtsls1 (IACOR-MMtsls1).

4. PARALLEL APPROACH FOR MTSLS1
We also propose a parallel approach called the IACOR-

Parallel Mtsls1 (IACOR-PMtsls1). In the serial case, we
optimize the dimensions of the function without considering
their sequence, indicating that these can be optimized in-
dividually. Thus, a parallel approach (Fig. 3) would begin
the search process along each dimension simultaneously to
obtain the optimal point along that dimension. This paper
is restricted to the performance analysis of this approach,
while speedups may be obtained by implementation on par-
allel platforms.

x1 x2 xn

(x̂1, x2.., xn) (x1, x̂2.., xn) (x1, x2.., x̂n)

(x1, x2.., xn)

fa
1 f b

1f c
1 fa

2
f b
2f c

2 fa
n f b

nf c
n

a a ab b bc c c

x̂1 x̂2 x̂n

T1 T2 Tn

(x̂1, x̂2.., x̂n)

Figure 3: The IACOR-PMtsls1 approach.

5. EXPERIMENTAL STUDY AND RESULTS
We evaluate our approach by comparing its performance

on the Soft Computing (SOCO) Benchmarks [1, 3]. Fig. 4
compares IACOR-MMtsls1 and IACOR-PMtsls1 with other
approaches. The average and median errors for our ap-
proaches are comparable to others.

Table 1 shows the results of applying the Wilcoxon signed-
ranks test to estimate the overall difference in performance.
(W+) and (W−) denote sum of signed ranks, and (N) in-
dicates the number of instances for which there is a dif-
ference in the result between the two algorithms. A p-
value less than 0.05 indicates that the result has a signif-
icant statistical difference with the algorithm being com-
pared. For IACOR-MMtsls1, there is no statistically signif-
icant difference on 10 out of the 16 algorithms, while for

1.0e-13

1.0e-10

1.0e-06

1.0e-02

1.0e+02

1.0e+06

D
E

C
H

C
G

-C
M

A
-E

S

IA
C

O
R -M

tsls1

IA
C

O
R -M

M
tsls1

IA
C

O
R -P

M
tsls1

D
E

C
H

C
G

-C
M

A
-E

S

IA
C

O
R -M

tsls1

IA
C

O
R -M

M
tsls1

IA
C

O
R -P

M
tsls1

E
rr

o
rs

 o
f 

F
it
n

e
s
s
 V

a
lu

e

Figure 4: Box plot for average(pink) and median(blue) error.

Table 1: Wilcoxon Signed-Ranks Tests

S. No. Algorithm IACOR-MMtsls1 IACOR-PMtsls1
W+ W- N p-value W+ W- N p-value

1 DE 63 28 13 0.2439 52 39 13 0.6848
2 CHC 190 0 19 0.0001 173 17 19 0.0017
3 G-CMA-ES 157 14 18 0.0018 143 28 18 0.0123
4 SOUPDE 47 31 12 0.5693 38 40 12 0.9697
5 DE-D40+Mm 73 32 14 0.2166 66 39 14 0.4263
6 GODE 58 33 13 0.4143 47 44 13 0.946
7 GaDE 34 32 11 0.9658 29 37 11 0.7646
8 jDElscop 17 19 8 0.9453 12 24 8 0.4609
9 MOS-DE 3 25 7 0.0781 0 28 7 0.0156
10 MA-SSW-Chains 136 35 18 0.0279 126 45 18 0.0778
11 RPSO-vm 136 0 16 0.0004 120 16 16 0.0072
12 Tuned IPSOLS 82 54 16 0.4691 76 60 16 0.6791
13 EvoPROpt 190 0 19 0.0001 154 36 19 0.0176
14 EM323 95 10 14 0.0052 68 37 14 0.3575
15 VXQR1 75 30 14 0.1726 66 39 14 0.4263
16 IACOR-Mtsls1 25 3 7 0.0781 12 16 7 0.8125

IACOR-PMtsls1, there is no difference on 11. On an aver-
age, the reference approach takes 16% more function eval-
uations (IACOR-Mtsls1: 135638, IACOR-MMtsls1: 117021
and IACOR-PMtsls1: 117142).

6. CONCLUSION AND FUTURE WORK
We proposed two variants of IACOR-Mtsls1, viz. IACOR-

MMtsls1 and IACOR-PMtsls1. Our approaches find the
optimal solutions, while using a fewer number of function
evaluations.

7. REFERENCES
[1] F. Herrera, M. Lozano, and D. Molina. Test suite for

the special issue of soft computing on scalability of
evolutionary algorithms and other metaheuristics for
large scale continuous optimization problems. 2010.

[2] T. Liao, M. A. Montes de Oca, D. Aydin, T. Stützle,
and M. Dorigo. An incremental ant colony algorithm
with local search for continuous optimization. In
Proceedings of the 13th annual conference on Genetic
and evolutionary computation, pages 125–132. ACM,
2011.

[3] M. Lozano, F. Herrera, and D. Molina. Special issue on
scalability of evolutionary algorithms and other
metaheuristics for large scale continuous optimization
problems. Soft Comput, 2011.

[4] L.-Y. Tseng and C. Chen. Multiple trajectory search
for large scale global optimization. In Evolutionary
Computation, 2008. CEC 2008.(IEEE World Congress
on Computational Intelligence). IEEE Congress on,
pages 3052–3059. IEEE, 2008.

1418




