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ABSTRACT 

Resources scheduling is a significant research topic in cloud 
computing, which is often modeled as a cost-minimization and 
deadline-constrained workflow scheduling model. This is a 
constrained single objective problem that to minimize the overall 
workflow execution cost while meeting deadline constraints. In 
this paper, we offer a new horizon to convert this single-objective 
problem to a multi-objective problem and present coevolutionary 
multiswarm particle swarm optimization (CMPSO) to find the 
non-dominated solutions with different execute cost and time. 
Meanwhile, the renumber strategy is adopted in CMPSO to make 
the learning efficient. CMPSO is compared with a renumber PSO 
(RNPSO) by setting the execute time in the CMPSO’s non-
dominated solutions as the deadline constraint of RNPSO. Results 
show that CMPSO not only offers many non-dominated solutions 
with different prices and execute time, but also obtains better 
solution than RNPSO under a same deadline. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search – Heuristic methods. 

General Terms 
Algorithms, Performance, Design, Experimentation 

Keywords 
Cloud computing; scheduling; renumber; particle swarm 
optimization; guiding point 

1. INTRODUCTION 
Cloud computing is a rapid developing computing type that 
groups a mass of resources and uses virtualization technique to 
provide service over the Internet [1][2]. Its parallel and distributed 
computing ability also make it efficiency for executing workflows 
which require a high-level computing environment because of the 
complex and large amount of data. 

Fig. 1 illustrates a workflow with a set of tasks T = {t1, t2, … , tn}, 
which have parent-children relationship. The values on the edges 

denote the data transfer time from the parental task to the children 
task if they are not executed on the same virtual machines (VMs). 
Therefore, a child task can only be executed after all its parent 
tasks have been finished and all the data have been transferred. 
For example, for task t5, if it is executed on the same VM with 
task t2, but not the same with task t3. Then the task t5 can be 
executed only after both t2 and t3 have finished and t3 has 
transferred the data to t5, with data transfer time being 2. 

 
Fig. 1.  A sample of workflow. 

The cloud workflow scheduling model has been defined in [3], [6], 
and [7], which is also briefly described as follows. A schedule is 
defined as S = (T, R, M, TEC, TET) where T represents a set of 
tasks, R = {r1, r2, … , rn} is a set of resources, M represents the 
tasks to resources mappings, TEC is short for ‘total execution 
cost’, and TET is short for ‘total execution time’. Every resource rj 
has a VM type VMj and an estimated lease start time LSTj and 
lease end time LETj. M represents a mapping and is consisted of 
the forms m(i, j) for every task. The elements in m(i, j) express 
that task ti is scheduled to run on resource rj and is anticipated to 
begin at start time STi and finish at end time ETi. The calculations 
of TEC and TET are shown as Eqs (1) and (2). 

| |

1

R

ii i
i

TEC C LET LST


                              (1) 

 max{ : }tET TT TtE                          (2) 

 (A) For a single-objective problem, the optimization objective is 
to minimize the value of TEC while to make sure the value of TET 
meets the deadline constraint. That is, the objective is as Eq (3) 
and the constraint is as Eq (4). 

 Minimize f TEC                             (3) 

TET deadline                                  (4) 
(B) For a multi-objective problem, there are two objectives TEC 
and TET to be minimized. Thus the solution is a schedule S with 
non-dominated TEC and TET as Eqs (5). 
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                           (5) 

Rodriguez and Buyya [3] adopted the single-objective 
optimization model in their work and proposed particle swarm 
optimization (PSO) [4][5] to find a resource scheduling sequence 
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on that model.. Later, Chen et al. [6] and Li et al. [7] also 
followed such a model and proposed to use dynamic objective 
genetic algorithm and renumber PSO (RNPSO) to solve the 
problem respectively. In this paper, we extend the scheduling 
model from the single-objective problem to a multi-objective 
problem and present coevolutionary multiswarm particle swarm 
optimization (CMPSO) [8] to find the non-dominated solutions 
with different execute cost and time. 

As RNPSO uses a resource renumber strategy to sort the cloud 
resources according to the price per unit time, it insures the 
learning process in PSO make sense. The RNPSO has been 
evaluated by Li et al. [7] and has shown better performance than 
traditional PSO. Therefore, in this paper, we adopted the resource 
renumber strategy into CMPSO. 

2. Performance Evaluation 
The parameters of RNPSO and CMPSO are presented in Table 1. 

Table 1 Parameter in RNPSO and CMPSO 
Parameter RNPSO CMPSO Others 
popsize 100 50×2=100 

Archive 
size of 
CMPSO 10 

 0.5 0.9~0.4 
c1,c2 2.0 c1,c2,c3 4.0/3 
r1,r2 [0,1] r1,r2,r3  [0,1] 

We examine RNPSO and CMPSO on two different scales of 
cloud computing environments, which are the same with the ones 
used in [7]. Case 1: 50 tasks and 10 resources; Case 2: 100 tasks 
and 10 resources. 

In each scale environment, we run CMPSO 10 independent times, 
with each time 4000 generations. The non-dominated solutions of 
the 10 times are presented in Table 2 and Table 3 respectively. 

In the first two rows of the tables, 10 non-dominated solutions 
obtained by CMPSO with different TET and TEC are presented. 
For each solution, we set the TET obtained by CMPSO as the 
deadline constraint for RNPSO and present the TEC result 
obtained by RNPSO in the third row to compare with CMPSO.  
Moreover, the probability of finding feasible solution under such 
TET deadline constraint is also presented in the fourth row. 
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(a) Case 1                                               (b) Case 2 

Fig. 2. Result of RNPSO and CMPSO. (a) Case 1; (b) Case 2. 

We also plot the solutions found by RNPSO and CMPSO in Fig. 
2. The results in the tables and figure show that CMPSO is better 
than RNPSO. CMPSO can obtain different non-dominated 
solutions with different TET and TEC values, while RNPSO can 
only obtain solutions whose TET (deadline) value is large. The 
reason may be that CMPSO doesn’t need to consider the deadline 

as a constraint so it can evolve smoothly and provide a set of non-
dominated solutions.  

3. Conclusions 
In this paper, we firstly transfer the single-objective problem in [7] 
to a multi-objective problem by considering the execute time as a 
second objective instead of a deadline constraint. Meanwhile, we 
proposed CMPSO to solve the multi-objective optimization 
problem.  The results show that GPCMPSO can not only offer 
many non-dominant choices with serial different prices and 
execute time, but also it can work out a more beneficial solution 
than RNPSO under a same deadline. Additionally, CMPSO is able 
to provide outcomes with an excessively pressed deadline while 
RNPSO struggling on finding a feasible answer. 
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Table 2 Results in Case 1 Environment 
TET 98.896 47.322 44.526 40.334 38.930 32.359 30.957 27.808 26.829 26.337 
TEC 260.206 262.607 274.662 378.940 436.678 477.202 504.196 547.276 567.730 587.628 
RNPSO 365.614 301.748 324.589 398.487 460.274 503.342 581.928 617.268 - - 
prob 100% 100% 100% 100% 100% 90% 70% 70% 0% 0% 

Table 3 Results in Case 2 Environment 
TET 193.867 58.757 58.114 57.886 57.587 57.333 57.034 56.634 56.335 56.157 
TEC 576.481 583.615 597.251 657.841 678.295 711.643 732.097 744.023 764.477 803.488 
RNPSO 790.589 - - - - - - - - - 
prob 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
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