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ABSTRACT
We show that multistart next ascent hillclimbing compares
favourably to crowding-based genetic algorithms when solv-
ing instances of the multimodal problem generator. We con-
jecture that it is unlikely that any practical evolutionary al-
gorithm is capable of solving this type of problem instances
faster than the multistart hillclimbing strategy.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search
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1. THE MULTIMODAL PROBLEM
GENERATOR

The multimodal problem generator was originally pro-
posed in [1] and used by several researchers in subsequent
studies. The generator creates problem instances with a
certain number of peaks. For a problem with n peaks, n
bit-strings of length L are uniformly randomly generated.
Each of these strings is a peak (a local optimum) in the
landscape. Different heights can be assigned to different
peaks. To evaluate an individual x, first locate its nearest
peak in Hamming space (with ties broken uniformly at ran-
dom). The fitness of x is the number of bits the string has
in common with its nearest peak, divided by L, and scaled
by the height of the nearest peak.

2. HILLCLIMBING AND GENETIC ALGO-
RITHMS WITH NICHING

We applied a multistart next ascent hillclimbing (MS-
NAHC) algorithm to instances of the multimodal problem
generator. Starting from a random solution, the algorithm
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reaches the top of a peak using next ascent hillclimbing
(NAHC). Once there, it restarts from another random so-
lution, and keeps doing that until a given stop criterion is
satisfied. NAHC explores the neighbourhood of the current
solution in a randomly generated order. As soon as a bet-
ter neighbour is found, that neighbour becomes the current
solution. This process is repeated until no neighbour im-
proves upon the current solution. In this paper we consider
the neighbourhood of a string x to be the set of strings whose
Hamming distance to x is 1.

A standard genetic algorithm (sGA) without diversity pre-
servation techniques is unable to reliably reach the top of the
best peak on instances of the multimodal problem generator
unless very large population sizes are used, being much less
efficient than multistart next ascent hillclimbing [4].

Diversity preservation techniques, commonly referred as
niching, are especially useful for solving multimodal opti-
mization problems. By maintaining diversity in a population
of solutions it is expected that an evolutionary algorithm
(EA) can maintain basins of attraction of several optima for
long periods of time allowing it to obtain multiple optimal
or near-optimal solutions in a single run. Here we explore
crowding-based niching techniques, namely restricted tour-
nament selection (RTS) [2], and variations inspired on it.
RTS incorporates the notion of local competition within a
steady-state EA forcing a new individual to compete with
an existing population member that is similar to it.

RTS does not have a mating restriction mechanism pre-
venting solutions from different basins of attraction to mate
with each other. As observed in [4], crossover is only ben-
eficial in these problem instances when it crosses solutions
near the same peak. To address this issue, we implemented
a mating restriction mechanism on top of RTS. We name
the resulting method RTS-MR. As opposed to RTS, only
one solution is randomly chosen from the population, call
it A. Ideally A should mate with a solution that is not to
far away from it, i.e., a solution in the same basin of attrac-
tion. The obvious way to achieve that is to implement the
same method employed by RTS for finding a not dissimilar
individual to compete with, and use it for the mating phase
as well. As such, instead of picking the second solution B
at random, we scan w individuals at random from the pop-
ulation and pick the one that is most similar (but whose
distance to it is at least 2 bits) to mate with it. The 2-bit
minimum distance restriction is used because crossing two
bit strings whose Hamming distance is less than 2 always
produces children identical to the parents, regardless of the
crossover operator used. The remaining part of the algo-
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(a) Unequal-height peaks
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(b) Equal-height peaks

Figure 1: Average number of fitness evaluations
needed for to reach the top of the best peak for
the unequal-height peak instances, and to reach the
top of all peaks for the equal-height peak instances.

rithm is exactly the same as in RTS. In other words, RTS-
MR implements both a mating restriction policy as well as
a competition/replacement restriction.

We also tested a third algorithm that uses mutation alone
and has a replacement strategy that enforces a crowding-like
mechanism when mutation rates are low. The algorithm is
very simple. A solution A is drawn at random from the pop-
ulation. That solution undergoes mutation yielding a new
solution A′. Then A′ competes with A and whichever is best
is allowed to stay in the population. With a low mutation
rate, A and A′ should be similar to each other, and the com-
petition between them enforces a crowding mechanism, just
like in RTS. We name this algorithm (µ; 1 + 1)-EA, due to
its resemblance to the classical (1 + 1) and (µ+ 1) EAs.

3. EXPERIMENTS
We run MS-NAHC, RTS, RTS-MR, and (µ; 1 + 1)-EA,

on randomly generated instances of the multimodal prob-
lem generator with 20, 40, 80, 160, and 320 peaks. A string
length L of 100 bits is used on all instances. We did exper-
iments with equal- and unequal-height peak instances. For
the unequal-height case, the heights were linearly interpo-
lated between 0.5 and 1.0 and the stopping criterion was to
reach the top of the best peak. For equal-height instances,
the stopping criterion was to reach the top of all peaks.

The implementation of RTS, RTS-MR, and (µ; 1+1)-EA,
was done in such a way that new individuals were only eval-
uated if absolutely necessary. Whenever a newly created
individual was identical to one of the parent individuals,
no fitness evaluation was spent. Similarly, during the local
competition on RTS and RTS-MR, if the two competing in-
dividuals are identical, no fitness evaluation is spent. We
did our best to use near-optimal parameter settings for the
three EAs so that they could perform as best as possible.

Uniform crossover was used on all experiments. On in-
stances of the multimodal problem generator, crossover is
only effective when crossing strings in the same basin of at-
traction. In such cases it is as if the problem had only a sin-
gle peak and that would make it equivalent to the classical
onemax problem for which uniform crossover provides bet-
ter mixing and faster convergence. We tested three crossover
rates Pc = 0.0, 0.5, 0.8 and used bit-flip mutation with prob-
ability 1/L. For RTS and RTS-MR, the window size w was

set to 4 times the number of peaks following the recommen-
dations given in [2] or to the population size, whichever was
minimum.

With respect to population sizing we used the bisection
method [5] to obtain the minimum population size that al-
lows the algorithms to reach the target goal on 100/100 in-
dependent runs. 30 independent bisection runs were per-
formed, yielding a total of 30 ∗ 100 = 3000 runs, per algo-
rithm and per problem instance. On all runs we imposed a
limit of 5 million fitness evaluations, upon which we consid-
ered the run to be unsuccessful. This limit is more than 3
times larger than the number of evaluations needed by the
worst of the 100 independent runs of MS-NAHC when solv-
ing the most difficult instance: reaching the top of all peaks
on a 320 equal-height peak instance.

Figure 1 reports the average number of fitness evaluations
needed by the various algorithms for increasing number of
peaks. MS-NAHC needs on average substantially less fitness
evaluations than tuned crowding-based EAs. Additional re-
sults and their discussion can be found in [3].

4. SUMMARY AND CONCLUSIONS
This paper showed that conventional niching and mat-

ing restriction techniques incorporated in an EA were not
sufficient to make them competitive with a multistart next
ascent hillclimbing strategy, when solving instances of the
multimodal problem generator.

We conjecture that it is unlikely that any practical evo-
lutionary algorithm is capable of solving this type of prob-
lem instances faster than the multistart hillclimbing strat-
egy. The reason for this claim is due to the observation that
the various optima are uniformly randomly generated, and
therefore completely unrelated to each other. In such cases
EAs are unable to do an effective search in the space of local
optima.
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