
Heuristic Search by Particle Swarm Optimization of
Boolean Functions for Cryptographic Applications

Luca Mariot
Dipartimento di Informatica,

Sistemistica e Comunicazione
Università degli Studi Milano-Bicocca

20126, Milano, Italy
l.mariot@campus.unimib.it

Alberto Leporati
Dipartimento di Informatica,

Sistemistica e Comunicazione
Università degli Studi Milano-Bicocca

20126, Milano, Italy
alberto.leporati@unimib.it

ABSTRACT

We present a Particle Swarm Optimizer for generating bool-
ean functions with good cryptographic properties. The pro-
posed algorithm updates the particles positions while pre-
serving their Hamming weights, to ensure that the generated
functions are balanced, and it adopts Hill Climbing to fur-
ther improve their nonlinearity and correlation immunity.
The results of the optimization experiments for n = 7 to
n = 12 variables show that this new PSO algorithm finds
boolean functions with good trade-offs of nonlinearity, re-
siliency and Strict Avalanche Criterion.

CCS Concepts

•Computing methodologies→ Discrete space search;

Keywords

Particle Swarm Optimization, Boolean Functions, Cryptog-
raphy, Hill Climbing

1. INTRODUCTION
It is known that, in order to withstand specific cryptana-

lytic attacks, the boolean functions employed in block and
stream ciphers must satisfy several cryptographic properties.

The goal of this paper is to investigate the use of Par-
ticle Swarm Optimization (PSO) to design boolean func-
tions featuring good combinations of cryptographic proper-
ties. The main idea is to apply Kennedy and Eberhart’s
discrete PSO [3] to explore the space of balanced boolean
functions. This is achieved through a new update proce-
dure, inspired by permutation PSO [2], which preserves the
Hamming weight (i.e., the number of nonzero coordinates)
of the particle positions. Further, the proposed PSO al-
gorithm is coupled with an Hill Climbing technique [4] to
locally improve the nonlinearity and deviation from correla-
tion immunity of the particles.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

GECCO ’15 July 11-15, 2015, Madrid, Spain

c© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3488-4/15/07.

DOI: http://dx.doi.org/10.1145/2739482.2764674

2. BOOLEAN FUNCTIONS
We briefly recall the cryptographic properties of boolean

functions considered in our paper. For further details, see [1].
A boolean function of n variables is a mapping of the form

f : Fn
2 → F2, represented either as a 2n-bit vector encoding

its truth table or as a multivariate polynomial called the Al-
gebraic Normal Form (ANF) of f . Function f is balanced if
its truth table is composed by an equal number of 0s and
1s, while the algebraic degree deg(f) of f is the degree of its
ANF. The nonlinearity of f , denoted by Nl(f), is the min-
imum Hamming distance of f from the set of affine func-
tions (i.e., functions of degree 1). Further, f is k-th order
correlation immune (CI(k)) if, by fixing i input variables
for 1 ≤ i ≤ k, the truth tables of the resulting restrictions
of f all have the same Hamming weight. A function which
is both balanced and CI(k) is k-resilient. Finally, function
f satisfies the Strict Avalanche Criterion (SAC) if by com-
plementing a single input bit the value of f changes with
probability 1/2, and the absolute indicator ACmax of f is
the maximum absolute value of its autocorrelation function.

Boolean functions used in symmetric ciphers should have
high algebraic degree and nonlinearity, satisfy resiliency of
high order and the SAC, and have low absolute indicator.
There are however some trade-offs among these criteria: for
example, given f : Fn

2 → F2 Siegenthaler’s bound states that
deg(f) ≤ n− k − 1, while for Tarannikov’s bound it results
that Nl(f) ≤ 2n−1 − 2k+1, where k is the resiliency order.

3. PSO ALGORITHM
The baseline algorithm adopted in our experiments is Ken-

nedy and Eberhart’s discrete PSO [3], where the positions of
the particles are 2n-bit vectors representing the truth tables
of boolean functions of n variables. In the basic version of
discrete PSO, the velocity vector of a particle specifies for
each coordinate of its position vector the probability that the
corresponding bit flips its value. Since each bit is updated
independently from the others, this procedure does not guar-
antee that the generated boolean function is balanced.

To solve this drawback, we designed a new swap-based
operator inspired from Hu, Eberhart and Shi’s permutation
PSO [2]. Given the balanced binary vector x ∈ F

2n

2 and the

corresponding probability vector p ∈ [0, 1]2
n

, for each coor-
dinate i ∈ {1, · · · , 2n} a swap is performed with probability
pi as follows. First, the value of xi is compared with that of
the global best solution g found by the whole swarm at the
same index, gi. If they are equal, then no action is taken.
Otherwise xi is swapped with xk, where k 6= i is such that

1425



Table 1: CGA-Evolved PSO Parameters

fitj w ϕ ψ vmax

fit1 0.5067 2.8751 1.3587 3.5008
fit2 0.7614 2.0073 2.0273 2.7183
fit3 0.2828 2.1824 0.8951 4.2639

xk 6= gk and xk 6= xi. In this way, the Hamming distance
of vector x from the global best g is decreased by 2, while
its balancedness is preserved. The whole update process
is then repeated using the local best solution of the particle.
The velocity vector of a particle is in turn updated using the
classical PSO velocity equation, which is normalized through
the logistic function to get meaningful probability values.

We tested our Particle Swarm Optimizer with three fitness
functions, all of which are maximized. Given f : Fn

2 → F2,
the fitness functions are defined as follows:

fit1(f) = Nl(f)− [CID1(f)/4]− [SACD(f)/8]

fit2(f) = Nl(f)− CID2(f)

fit3(f) = Nl(f)− ACmax(f)

where CID1(f), CID2(f) and SACD(f) respectively rep-
resent the deviations of f from CI(1), CI(2) and the SAC
as defined in [4]. A deviation value of 0 means that the
function satisfies the corresponding cryptographic property.

To further improve the performance of our PSO algorithm,
after the application of the position update operator each
particle is optimized with the Hill Climbing (HC) algorithm
designed by Millan, Clark and Dawson [4], which swaps a
pair of bits in the truth table of a boolean function to in-
crease its nonlinearity and decrease its deviation from CI(k).

4. EXPERIMENTATION
Recall that the PSO velocity equation depends on four

parameters: the inertia parameter w, the social and cog-
nitive constants ϕ and ψ, which respectively determine the
influence of the global best and the local best solution, and
the maximum velocity value vmax. For each fitness func-
tion we tuned these parameters using a Continuous Genetic
Algorithm (CGA). Table 1 reports the values of the best
CGA-evolved parameters adopted for our experiments.

We tested our PSO algorithm on the spaces of balanced
boolean functions from n = 7 to n = 12 variables. The
number of particles and iterations were set to P = 200 and
I = 400 respectively, and for each value of n and fitness
function we carried out R = 100 PSO runs.

Table 2 shows for each fitness function the cryptographic
properties of the global best solution g which scored the
highest fitness value among all the R = 100 PSO optimiza-
tion runs. One can notice that in the case of both fit1 and
fit2 the CI(k) boolean functions discovered by PSO always
reach Siegenthaler’s bound, even if the algebraic degree was
not evaluated by any of the three fitness functions.

Using fitness function fit1, the best boolean functions
found by our PSO algorithm are all CI(1) (and thus 1-re-
silient, since they are also balanced), and for n = 7 and
n = 8 they also satisfy the SAC.

On the other hand, our Particle Swarm Optimizer does
not perform well with respect to fit2, since for n > 7 the
deviation from CI(2) is always at least 8. However, it is
worth noting that for n = 7 the best solution is 2-resilient

Table 2: Best Boolean Functions Found

fitj Property 7 8 9 10 11 12

fit1

Nl 56 112 236 480 972 1972
deg 5 6 7 8 9 10
CID1 0 0 0 0 0 0
SACD 0 0 8 8 8 8

fit2

Nl 56 112 232 476 972 1972
deg 4 6 7 8 9 10
CID1 0 8 8 8 8 16
CID2 0 8 8 8 8 16

fit3

Nl 56 116 236 480 976 1972
deg 5 6 7 9 10 11

ACmax 16 32 48 80 128 208

and reaches both Siegenthaler’s and Tarannikov’s bounds.
Finally, another different behaviour of the PSO algorithm

can be observed using fitness function fit3. Indeed, one
can see that as the number of variables grows the absolute
indicator of the best solution gets worse. Nonetheless, for
n = 8 and n = 11 the nonlinearity values achieved with fit3
are greater than those obtained using fit1, while they are
equal in all other cases.

5. CONCLUSIONS
In this work, we applied a discrete PSO algorithm to opti-

mize the cryptographic properties of boolean functions from
n = 7 to n = 12 variables. The results of the experiments
show that our PSO discovers boolean functions achieving
good combinations of nonlinearity, first order correlation im-
munity and Strict Avalanche Criterion, while it does not
perform well when it minimizes deviation from CI(2) or the
absolute indicator.

A possible future development on the subject is to modify
the position update operator so that only the swaps which
increase nonlinearity or CI(k) are performed, for example
by integrating the Hill Climbing algorithm directly inside
the update procedure.

6. REFERENCES
[1] C. Carlet. Boolean functions for cryptography and

error-correcting codes. In Y. Crama and P. L. Hammer,
editors, Boolean Models and Methods in Mathematics,
Computer Science, and Engineering, pages 257–397.
Cambridge University Press, New York, May 2011.

[2] X. Hu, R. C. Eberhart, and Y. Shi. Swarm intelligence
for permutation optimization: Case study of n-queens
problem. In Proceedings of the IEEE Swarm
Intelligence Symposium, (Indianapolis, IN, April 24-26,
2003, pages 243–246, 2003.

[3] J. Kennedy and R. C. Eberhart. A discrete binary
version of the particle swarm algorithm. In Proceedings
of the IEEE International Conference on Systems, Man
and Cybernetics, (Orlando, FL, October 12-15, 1997),
pages 4104–4108, 1997.

[4] W. Millan and A. J. Clark. Heuristic design of
cryptographically strong balanced boolean functions. In
Proceedings of EUROCRYPT’98 (Espoo, Finland, May
31–June 4, 1998), Lecture Notes in Computer Science
vol. 1403, pages 489–499, 1998.

1426




