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ABSTRACT
We propose a post-processing strategy which consists of ap-
plying the averaged Hausdorff indicator to the complete
archive of solutions after optimization by multiobjective es-
timation of distribution algorithms (MEDAs) to select a uni-
formly distributed subset of non-dominated solutions.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods and Search; I.2.m [Artificial Intelligence]: Evo-
lutionary Computing and Genetic Algorithms—Multiobjec-
tive Evolutionary Algorithms

Keywords
Multiobjective optimization, Averaged Hausdorff distance,
Estimation of Distribution Algorithm

1. INTRODUCTION
A broad range of heuristics and metaheuristics has been

used to address multiobjective problems (MOPs). Evolu-
tionary multiobjective optimization algorithms (EMOAs) [2]
have been found to be a competent approach in a wide va-
riety of application domains. Alternatively, multiobjective
estimation of distribution algorithms (MEDAs) [6] were in-
troduced which aim at learning the problem structure and
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characteristics along the run and, hence, explore the search
space in a more efficient manner [3]. MEDAs replace the
application of evolutionary operators in the offspring gen-
eration process with the creation of a statistical model of
the fittest elements of the population in a process known as
model-building. This model is then sampled to produce new
elements. Nevertheless, MEDAs have not lived up to their
a priori expectations. This can be attributed to the fact
that most MEDAs have limited themselves to transforming
single-objective EDAs into a multiobjective formulation by
including an existing multiobjective fitness assignment func-
tion. Additionally, the tendency of MEDAs loosing pop-
ulation diversity has been reported [1]. This situation is
particularly dramatic in the multiobjective case, as diver-
sity and homogeneity are among the desired features of the
final non-dominated set. Here, we experimentally investi-
gate how MEDAs perform compared to classical EMOAs
and how especially MEDA results can be improved after
the run by means of a post-processing approach in terms of
equally spaced solutions on the non-dominated front.

2. POSTPROCESSING OF MEDA RESULTS
The averaged Hausdorff distance [7] can be used to as-

sess whether a non-dominated front has a sufficiently good
spread and a small distance to the true Pareto front.

Definition 1. Let A,B ⊂ RM be non-empty finite sets.
The value

∆p(A,B) = max(GDp(A,B), IGDp(A,B)) with

GDp(A,B) =

(
1

|A|
∑
a∈A

d(a,B)p
)1/p

and

IGDp(A,B) =

(
1

|B|
∑
b∈B

d(b, A)p
)1/p
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for p > 0 is termed the averaged Hausdorff distance between
sets A and B where d(u,A) := inf{‖u − v‖ : v ∈ A} for
u, v ∈ RM and some vector norm ‖ · ‖.

Suppose that some MEDA has generated a non-dominated
front for some MOP. Typically, the points on the front are
not evenly distributed. Therefore, we propose the following
post-processing approach:

1. Run your favorite MEDA with a tiny add-on: store
each generated offspring in a file.

2. After termination of your favorite MEDA: construct
an evenly spaced reference front from a non-dominated
front (e.g. the last population); then feed each stored
offspring into the ∆p archive updater (see Alg. 1) se-
quentially; the final content of the archive A is the
desired approximation.

For bi-objective problems the reference front R can be con-
structed as a linear interpolation from a given approxima-
tion of the Pareto front [4]. Alg. 1 shows a naive ∆1 update
operation.

Algorithm 1 Naive ∆1-update

Require: archive set A, reference set R, new element x
1: A = NDf (A ∪ {x},�) // non-dom. filtering
2: if |A| > NR := |R| then
3: for all a ∈ A do
4: h(a) = ∆1(A \ {a}, R)
5: end for
6: A∗ = {a∗ ∈ A : a∗ = argmin{h(a) : a ∈ A}}
7: if |A∗| > 1 then
8: a∗ = argmin{GD1(A \ {a}, R) : a ∈ A∗}
9: end if

10: A = A \ {a∗}
11: end if

For feeding the stored pairs (x, F (x)) into the archive
updater we use a ‘forward update’ in which individuals are
added in the order of their generation. Often, they will pass
the initial dominance check, so that subsequent ∆p calcula-
tions are necessary. A more time saving ‘backward update’
adds stored pairs into the archive updater in inverted order.
This way, most points from later stages of the inverted se-
quence will probably not pass the initial dominance check,
which leads to less ∆p calculations. Since the order of adding
the points clearly affects the final outcome, we compare both
approaches experimentally.

3. EXPERIMENTS AND RESULTS
For experimentation we used well known MOPs for bench-

marking [4]: the sphere problem, DENT, ZDT3 and WFG1
which feature different convexity and concavity character-
istics. Reference fronts covered by 1,000 uniformly spaced
points were created based on a parametric form which al-
lows exact calculation of the optimal fronts’ length for all
benchmark problems (except WFG1). Our evaluation is
based on four state-of-the-art general purpose EMOAs and
four MEDAs. As EMOAs, we employed NSGA2 and SMS-
EMOA with standard parameters as well as PSEMOA and
SCD-NSGA2 being special purpose methods that try to keep
evenly spaced solutions. As MEDAs we use naive MIDEA
and MO-CMA-ES as well as MONEDA and MARTEDA

which are designed for diversity preservation. All test prob-
lems were optimized 20 times by all algorithms for 50,000
function evaluations each, population sizes µ ∈ {10, 20, 100},
and p ∈ {1, 2}.

From a first MEDA/EMOA comparison regarding the over-
all algorithmic behavior it is notable that the MEDAs lead to
very stable results over the repeated runs which is reflected
by both hypervolume and ∆p indicators while no MEDA is
superior to the others. Thus, the MEDAs are at least com-
petitive with the classical EMOAs on our test problems.

Applying the post-processing strategy to the results im-
proves the final approximation quality of the MEDAs in
terms of ∆p for all population sizes. As the Pareto front
of ZDT3 is disconnected, the performance of the consid-
ered post-processing differs from the remaining test prob-
lems, as the linear interpolation ignores the discontinuity in
the interpolation and tends to place reference points also in
unattainable regions.

Further, the direction of the archive update strategy has
no influence on the final approximation quality. However,
the backward strategy requires much less updating itera-
tions until the selected subset becomes stable than the for-
ward strategy. Therefore, we recommend to favor this ap-
proach over the forward update in general such that the
post-processing will be much more computationally efficient.

An extended and more detailed paper containing the post-
processing method, the experimental setup, and results can
be found in [5].
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