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ABSTRACT
Since the early studies in multiobjective evolutionary op-
timization, fitness assignment and/or selection have been
the main focus of research in the field. In general, many
of the methods proposed share the same goals: keep diver-
sity along the Pareto-front and favor convergence towards
Pareto-optimality. However, whether in the context of Pareto
dominance or hypervolume, many studies have reported dif-
ficulties in keeping a good spread of solutions in objective
space due to a certain bias that drives the population towards
the middle region of the Pareto front. While techniques such
niching and crowding (in the context of selection) and re-
stricted mating (in the context of reproduction) have been
proposed to circumvent such bias, few is known about its
origins. This paper evaluates the influence of crossover in
such bias and shows that uniform crossover operators have an
intrinsic bias that favors the middle region and deteriorates
the effects of diversity preservation mechanisms. Following
from that, we propose a simple way to handle the bias of uni-
form crossover and enable a better synergy with the crowding
mechanism of the NSGA2. Results in bi-objective instances
of ρMNK-landscapes confirm that such approach enable a
better diversity preservation.

Categories and Subject Descriptors
G.1.6 [Optimization]: Global Optimization—Multiobjective
Evolutionary Algorithms
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1. INTRODUCTION
Multiobjective Optimization Problems (MOPs) are defined

by a set of objective functions that attribute value to decision
vectors x = (x1, . . . , xN ) ∈ S, with S ⊆ RN . The image of
the feasible region S according to the vector-valued function
f = (f1, f2 . . . , fM ) is the feasible objective region Z ⊆ RM ,
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composed of objective vectors z = (f1(x), f2(x), . . . , fM (x)).
In other words, the objective functions map each feasible
decision vector x ∈ S to objective vectors z ∈ Z.

max z = f(x), Z ⊆ RN

subject to x ∈ S, S ⊆ RN (1)

The main goal in solving MOPs is to find of a set of well-
diversified (diversity) Pareto-optimal solutions (convergence)
from which a target solution can be chosen a posteriori.

Since the early studies, selection has been one of the main
research focuses in Multiobjective Evolutionary Algorithms
(MOEAs). Regarding reproduction operators, the literature
is not so abundant. Many methods have been proposed
to improve convergence of diversity of the non-dominated
solutions found, but few has been said about the specific
weaknesses that make traditional crossover operators, like
p-uniform and n-point, inappropriate.

We have hypothesized the inherent bias of traditional
crossover (uniform, 1-point and 2-point crossover) tends to
misguide the population in objective space, favoring biased
convergence a prior to diversity. This way, crossover spoil
the benefits of diversity preservation mechanisms, decreasing
their efficacy in producing a well-spread Pareto-front. We
propose and evaluate a crowding-biased uniform crossover
which favors the synergy between diversity preservation and
crossover in order to produce a better spreading.

2. ORIGINS OF CROSSOVER-BIAS
The p-uniform crossover operator will take two parents

x1,x2 ∈ S and generate one child y. Each bit yi, ∀i =
1, . . . , N comes from parent x1 with probability p and parent
x2 with probability 1 − p. The number of bits from each
parent is a random variable Bp with expected value:

E(Bp) =

N∑
i=1

p = N · p (2)

Therefore, if p = 0.5, y is, on average, distant N/2 bits
from each parent. Now, suppose x1 is a very good solution
according to an objective and x2 is a very good solution for
a second objective. Therefore, y will have half of the genetic
material of each parent and we can expect it to be only half
as good as each parent, in this case, zy is biased towards the
center of the objective space. Although Non-dominated Sort-
ing Genetic Algorithm 2 (NSGA2)’ crowding may attribute
extra fitness to solutions x1 and x2 to favor extreme regions,
the region in the middle will be more intensely exploited and
extreme solutions are likely to be lost.
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3. CROWDING-BIASED CROSSOVER
In order to handle crossover bias and at the same time

synchronize the goals of crowding and reproduction, param-
eter p in uniform crossover must be adapted according to
the characteristics of the parents undergoing crossover. In
NSGA2, the crowding distance d(x) associated with every
solution x ∈ P (t) at generation t > 0 describes how isolated
the objective vector zx is in the objective space. Therefore,
by defining p according to the crowding distance of parents
x1 and x2 (respectively, d(x1) and d(x2)), we can generate
offspring closer to more isolated regions.

We consider ψ a simple linear mapping, with minp = 0.5,
maxp = 0.95 and mind and maxd obtained from the current
population and denote as ∆p and ∆d, respectively.

p =

minp +
(d(x1)−mind) ·∆p

∆d
, d(x1) <∞

maxp, d(x1) =∞,
(3)

In words, taking in account the crowding distances of solu-
tions in the current population P (t), for each pair of parents
x1 and x2 a p value is defined to bias the offspring towards
the more isolated parent. If x1 is an extreme solution, with
d(x1) =∞, the resulting offspring will be composed, in aver-
age, by 0.95 ·N bits from x1. Otherwise, if d(x1) = 0, x1 is
in a crowded region (or the crowding distance has not been
computed for x1), therefore, the usual p = 0.5 is applied.
Non-linear mappings could also be applied to control the
bias, but we leave this for future works.

4. EXPERIMENTS AND RESULTS

4.1 The ρMNK-landscapes Model
The model considers N -dimensional vectors x ∈ {0, 1}N ,

in which each decision variable xi interacts with K others
(xi1 , . . . , xiK ). As K grows from 0 to N−1, the non-linearity
also increases, making the instance harder to solve:

max fNK(x) =
1

N

N∑
i=1

fi(xi, xi1 , . . . , xiK )

Vérel et al. [1] proposed and analyzed the fitness landscapes
of MNK-landscapes with different degrees of correlation,
ρ = −0.9, among objective functions (ρMNK-landscapes).
Since we want to evaluate the impact of crossover in the
diversity of the Pareto-fronts found, we generated negatively
correlated instances with the following settings: M = 2,
N = 500, K = 8 and ρ = −0.9. For each instance, 30 runs
were performed, with a limit of 500, 000 fitness evaluations,
using the crowding-biased uniform crossover and the usual
uniform crossover with p = 0.1, 0.5.

4.2 Results and Discussion
Figure 1 shows the comparison of p = 0.1, 0.5 uniform

crossover and the crowding-biased uniform crossover pro-
posed in Section 3. Uniform crossover, with 0.1 ≤ p ≤ 0.5,
performed slightly better in the middle region than its crowd-
ing biased counterpart. However, as can be noticed by the
dark regions, the improvements in spreading reached by the
crowding-biased crossover were far more evident. Such sim-
ple modification changes the behavior of crossover, decreases
its inherent bias and set its goals in agreement with the
diversity preservation mechanism of NSGA2 implemented by
crowding.
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(a) p = 0.1 vs crowding-biased uniform crossover
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(b) p = 0.5 vs crowding-biased uniform crossover

Figure 1: Comparison between crowding-biased uni-
form crossover (NSGA2-self) and traditional uni-
form crossover with p = 0.1, 0.5 (NSGA2-p=*).

5. CONCLUSIONS
We noticed the incompatibility between the crowding mech-

anism and crossover results. While the first tries to guaran-
tee a well-distributed front, the second ends up producing
more offspring in the middle region. In order to circum-
vent such incompatibility, we proposed a crowding-biased
uniform crossover that, considering two parents, will gener-
ate offspring closer to the more isolated one. Experiments
with instances of the ρMNK-landscapes model showed the
efficacy of this simple approach in increasing diversity and
spreading of the Pareto-fronts produced. It would be inter-
esting, to analyze in more practical MOPs.
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