Wave: A Genetic Programming Approach to Divide and Conquer

David Medernach BDS Group University of Limerick david.medernach@ul.ie Jeannie Fitzgerald BDS Group University of Limerick jeannie.fitzgerald@ul.ie R. Muhammad Atif Azad BDS Group University of Limerick atif.azad@ul.ie

Conor Ryan BDS Group University of Limerick conor.ryan@ul.ie

ABSTRACT

This work introduces *Wave*, a divide and conquer approach to GP whereby a sequence of short, and dependent but potentially *heterogeneous* GP runs provides a collective solution; the sequence akins a *wave* such that each short GP run is a *period* of the wave. Heterogeneity across periods results from varying settings of system parameters, such as population size or number of generations, and also by alternating use of the popular GP technique known as *linear scaling*.

Categories and Subject Descriptors

D.1.2 [Programming Techniques]: Automatic Programming; I.2.6 [Artificial Intelligence]: Learning—Induction

Keywords

Genetic algorithms; Genetic programming; Semantic GP

1. BACKGROUND

Sequential Symbolic Regression [3] (SSR) spreads the task of approximating training data across a number of GP runs, where each such run is termed an *iteration*. At the end of each iteration, outputs of the original problem are modified based on the use of a geometric semantic crossover [2] on the output of the best evolved solution in the current iteration. In the next iteration SSR evolves the best match to the current solution; however, each iteration is homogeneous and typically uses a large number of generations.

Outside the field of GP a similar method is *cascade correlation (CasCor)* [5], where hidden layers are added and trained to reduce the residual error of a previously trained artificial neural network.

GECCO '15 July 11-15, 2015, Madrid, Spain

© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3488-4/15/07.

DOI: http://dx.doi.org/10.1145/2739482.2764659

2. WAVE

Instead of the traditional GP approach where each GP run consists of a potentially large number of generations, Wave (see Figure 1) uses a collection of heterogenous periods, and simply sums their best results. At the end of each period, tbeing the target value at the start of this period, and f_i being the best evolved function for this period, if $(f_i - t)^2 < (0 - t)^2$ we add f_i to the joint solution; and t' is the new data-set for the next period such that $t' = t - f_i$; else we launch the next period to again optimise over the same target set t. The next period starts afresh with a new population. Each period stops when it ceases to produce a significant improvement and therefore match the following condition: $g_c > g_m$ and $(B^F(g_c) - B^F(g_c - 2)) \le (B^F(g_c - 2) - B^F(g_c - 5))/200$ where g_c is the current generation, g_m is a minimum number of generations before a period stops and $B^F(g_c)$ is the best training fitness at generation g_c . We end a wave when 25 periods have been processed.

Figure 1: A simple Wave setup is depicted.

Different *periods* of Wave can use different GP settings. Thus, we observe the effect of increasing the population size and the minimum number of generations before stopping a period. We also report experiments where periods alternate between use and non use of linear scaling.

3. EXPERIMENTS

For this study we have used two multi-dimensional data-sets from the UCI Machine learning repository [1] (Concrete

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

Strength and **Yacht**) and two mathematical functions (**Poly-10** [4] y = x1 * x2 + x3 * x4 + x5 * x6 + x1 * x7 * x9 + x3 * x6 * x10 and **Div-5** [6] $y = \frac{10}{5 + \sum_{i=1}^{5} (x_i - 3)^2}$). For each mathematical function, we randomly generate 500 data points in the range [0; 1] and for each wave we randomly split the given data-set into two subsets of equal size for training and testing purposes.

We compare Wave with standard GP (both with and without linear scaling; with a population size of 500; each run spans 100 generations) and a non-EC method: multiple linear regression (MLR). We run MLR 100 times, splitting the data randomly into equal partitions for training and testing. At each generation, each individual's fitness is computed both on testing and training data. We adopt for the following naming convention: Wave : PeriodsNumber : Setting – P : PopulationSize.

4. RESULTS AND DISCUSSION

We measure the various run statistics at the end of each period for Wave experiments and every ten generations for SGP; we call those reporting times *moments*. For each moment, of each data-set, of each setting, median testing and training values are computed over 100 independent runs.

In tables 1-4 we report the best moment (lowest test fitness) for each setting on each data-set. Additionally, we report the **Fastest Good Wave**; this is a Wave set up which outperforms the best SGP moment on test fitness and consumes fewer nodes than any other Wave. We use the Mann-Whitney U test at p = 0.05 to test the statistical significance.

Method	Moment	Train	Test	Nodes
SGP:LS-P:500	71g	5.16411	6.21251	2468926
SGP:NS-P:500	81g	4.09004	4.48998	3410695
Wave:25:LS-P:100	23p	7.42025	7.87332	2056251
Wave:25:NS-P:100	22p	4.01469	5.41762	999693
Wave:200:LS-P:25	200p	9.02013	9.30088	450465
Wave:25:LS-P:500	25p	6.48936	7.08987	3229500
Wave:25:NS-P:500	9p	3.38198	4.73403	2464113
Wave:25:LS:NS-P:500	16p	3.35759	4.50582	4342475
MLR	NĀ	8.86019	9.11015	NA
Fastest Good Wave :				
NA				

Table 1: Experimental results on Yacht dataset.

Method	Moment	Train	\mathbf{Test}	Nodes
SGP:LS-P:500	51g	14.1436	16.1199	671274
SGP:NS-P:500	81g	14.6654	14.8268	3080889
Wave:25:LS-P:100	25p	14.3886	14.5569	3139598
Wave:25:NS-P:100	25p	10.3821	11.3939	970429
Wave:200:LS-P:25	12p	16.2683	16.3699	402010
Wave:25:LS-P:500	21p	13.8497	13.9208	1753484
Wave:25:NS-P:500	14p	8.72476	10.1065	4418211
Wave:25:LS:NS-P:500	24p	7.71554	8.98308	7463434
MLR	NĀ	10.3123	10.5693	NA
Fastest Good Wave :				
Wave:25:LS;p:500	2 p	14.4465	14.5430	133466

Table 2: Experimental results on Concrete dataset.

The Fastest Good Wave results show that Wave not only achieves significantly better training fitness, but also produces at least equivalent testing fitness in three of the four data-sets, with significantly fewer node evaluations.

The setting which emerges as the most efficient is that which alternates use of linear scaling (Wave:25:LS:NS-P:500). This

Method	Moment	Train	\mathbf{Test}	Nodes
SGP:LS-P:500	1g	0.47447	0.47591	11515
SGP:NS-P:500	71g	0.37882	0.38868	383535
Wave:25:LS-P:100	7p	0.35781	0.45138	32134
Wave:25:NS-P:100	25p	0.20110	0.24104	2653574
Wave:200:LS-P:25	9p	0.20627	0.24712	220448
Wave:25:LS-P:500	6p	0.16587	0.18736	1097015
Wave:25:NS-P:500	24p	0.17971	0.22286	2824953
Wave:25:LS:NS-P:500	10p	0.16333	0.19930	1777974
MLR	NĀ	0.76773	0.77197	NA
Fastest Good Wave :				
Wave:25:Norm;p:100	3 p	0.35231	0.37657	51693

Table 3: Experimental results on Poly-10 dataset.

Method	Moment	Train	\mathbf{Test}	Nodes
SGP:LS-P:500	71g	0.02377	0.02395	2234774
SGP:NS-P:500	81g	0.05738	0.05897	2731481
Wave:25:LS-P:100	$7\mathrm{p}$	0.00698	0.00999	258080
Wave:25:NS-P:100	25p	0.10738	0.11704	3267500
Wave:200:LS-P:25	6p	0.02829	0.03099	15358
Wave:25:LS-P:500	6p	0.00442	0.00484	1050492
Wave:25:NS-P:500	23p	0.07700	0.08441	2143142
Wave:25:LS:NS-P:500	9p	0.00424	0.00480	1508355
MLR	NA	0.71604	0.71736	NA
Fastest Good Wave :				
Wave:25:LS;p:100	3 p	0.01808	0.02098	78061

Table 4: Experimental results on Div-5 dataset.

outperforms all chosen benchmarks on three out of the four data-sets, and among Wave setups, is only outperformed by Wave:25:LS-P:500 on the poly-10 problem. The heterogenity within the wave proves particularly useful because linear scaling does not always produce the best results. A mixed approach using the Wave paradigm appears to be a more flexible strategy that produces consistently good results.

5. **REFERENCES**

- K. Bache and M. Lichman. UCI machine learning repository, 2013.
- [2] A Moraglio, K Krawiec, C G. Johnson Geometric Semantic Genetic Programming. Parallel Problem Solving from Nature, Springer Berlin Heidelberg, 2012.
- [3] LOVB Oliveira, FEB Otero, GL Pappa, J Albinati Sequential Symbolic Regression with Genetic Programming. *Genetic and Evolutionary Computation, Springer*, 2014.
- [4] R. Poli. A simple but theoretically-motivated method to control bloat in genetic programming. In *Genetic Programming*, pages 204–217. Springer, 2003.
- [5] Prechelt, Lutz Investigation of the CasCor family of learning algorithms. *Neural Networks 10, Elsevier*, pages 885–896, 1997.
- [6] E J. Vladislavleva, G F. Smits, and D. Den Hertog. Order of nonlinearity as a complexity measure for models generated by symbolic regression via pareto genetic programming. *Evolutionary Computation*, *IEEE Transactions on*, 13(2):333–349, 2009.