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ABSTRACT
This work introduces Wave, a divide and conquer approach
to GP whereby a sequence of short, and dependent but po-
tentially heterogeneous GP runs provides a collective solu-
tion; the sequence akins a wave such that each short GP run
is a period of the wave. Heterogeneity across periods results
from varying settings of system parameters, such as popula-
tion size or number of generations, and also by alternating
use of the popular GP technique known as linear scaling.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Program-
ming; I.2.6 [Artificial Intelligence]: Learning—Induction

Keywords
Genetic algorithms; Genetic programming; Semantic GP

1. BACKGROUND
Sequential Symbolic Regression [3] (SSR) spreads the task of
approximating training data across a number of GP runs,
where each such run is termed an iteration. At the end of
each iteration, outputs of the original problem are modified
based on the use of a geometric semantic crossover [2] on the
output of the best evolved solution in the current iteration.
In the next iteration SSR evolves the best match to the
current solution; however, each iteration is homogeneous and
typically uses a large number of generations.

Outside the field of GP a similar method is cascade cor-
relation (CasCor) [5], where hidden layers are added and
trained to reduce the residual error of a previously trained
artificial neural network.
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2. WAVE
Instead of the traditional GP approach where each GP run
consists of a potentially large number of generations, Wave
(see Figure 1) uses a collection of heterogenous periods, and
simply sums their best results. At the end of each period, t
being the target value at the start of this period, and fi being
the best evolved function for this period, if (fi−t)2 < (0−t)2

we add fi to the joint solution; and t′ is the new data-set for
the next period such that t′ = t−fi; else we launch the next
period to again optimise over the same target set t. The next
period starts afresh with a new population. Each period
stops when it ceases to produce a significant improvement
and therefore match the following condition: gc > gm and
(BF (gc) − BF (gc − 2)) ≤ (BF (gc − 2) − BF (gc − 5))/200
where gc is the current generation, gm is a minimum number
of generations before a period stops and BF (gc) is the best
training fitness at generation gc. We end a wave when 25
periods have been processed.

Figure 1: A simple Wave setup is depicted.

Different periods of Wave can use different GP settings.
Thus, we observe the effect of increasing the population size
and the minimum number of generations before stopping a
period. We also report experiments where periods alternate
between use and non use of linear scaling.

3. EXPERIMENTS
For this study we have used two multi-dimensional data-sets
from the UCI Machine learning repository [1] (Concrete
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Strength and Yacht) and two mathematical functions
(Poly-10 [4] y = x1 ∗ x2 + x3 ∗ x4 + x5 ∗ x6 + x1 ∗ x7 ∗
x9 + x3 ∗ x6 ∗ x10 and Div-5 [6] y = 10

5+
∑5

i=1(xi−3)2
). For

each mathematical function, we randomly generate 500 data
points in the range [0; 1] and for each wave we randomly split
the given data-set into two subsets of equal size for training
and testing purposes.

We compare Wave with standard GP (both with and with-
out linear scaling; with a population size of 500; each run
spans 100 generations) and a non-EC method: multiple lin-
ear regression (MLR). We run MLR 100 times, splitting the
data randomly into equal partitions for training and test-
ing. At each generation, each individual’s fitness is com-
puted both on testing and training data. We adopt for
the following naming convention: Wave : PeriodsNumber :
Setting − P : PopulationSize.

4. RESULTS AND DISCUSSION
We measure the various run statistics at the end of each
period for Wave experiments and every ten generations for
SGP; we call those reporting times moments. For each mo-
ment, of each data-set, of each setting, median testing and
training values are computed over 100 independent runs.

In tables 1-4 we report the best moment (lowest test fit-
ness) for each setting on each data-set. Additionally, we
report the Fastest Good Wave; this is a Wave set up
which outperforms the best SGP moment on test fitness
and consumes fewer nodes than any other Wave. We use
the Mann-Whitney U test at p = 0.05 to test the statistical
significance.

Method Moment Train Test Nodes

SGP:LS-P:500 71g 5.16411 6.21251 2468926
SGP:NS-P:500 81g 4.09004 4.48998 3410695
Wave:25:LS-P:100 23p 7.42025 7.87332 2056251
Wave:25:NS-P:100 22p 4.01469 5.41762 999693
Wave:200:LS-P:25 200p 9.02013 9.30088 450465
Wave:25:LS-P:500 25p 6.48936 7.08987 3229500
Wave:25:NS-P:500 9p 3.38198 4.73403 2464113
Wave:25:LS:NS-P:500 16p 3.35759 4.50582 4342475
MLR NA 8.86019 9.11015 NA

Fastest Good Wave :
NA

Table 1: Experimental results on Yacht dataset.

Method Moment Train Test Nodes

SGP:LS-P:500 51g 14.1436 16.1199 671274
SGP:NS-P:500 81g 14.6654 14.8268 3080889
Wave:25:LS-P:100 25p 14.3886 14.5569 3139598
Wave:25:NS-P:100 25p 10.3821 11.3939 970429
Wave:200:LS-P:25 12p 16.2683 16.3699 402010
Wave:25:LS-P:500 21p 13.8497 13.9208 1753484
Wave:25:NS-P:500 14p 8.72476 10.1065 4418211
Wave:25:LS:NS-P:500 24p 7.71554 8.98308 7463434
MLR NA 10.3123 10.5693 NA

Fastest Good Wave :
Wave:25:LS;p:500 2 p 14.4465 14.5430 133466

Table 2: Experimental results on Concrete dataset.

The Fastest Good Wave results show that Wave not only
achieves significantly better training fitness, but also pro-
duces at least equivalent testing fitness in three of the four
data-sets, with significantly fewer node evaluations.
The setting which emerges as the most efficient is that which
alternates use of linear scaling (Wave:25:LS:NS-P:500). This

Method Moment Train Test Nodes

SGP:LS-P:500 1g 0.47447 0.47591 11515
SGP:NS-P:500 71g 0.37882 0.38868 383535
Wave:25:LS-P:100 7p 0.35781 0.45138 32134
Wave:25:NS-P:100 25p 0.20110 0.24104 2653574
Wave:200:LS-P:25 9p 0.20627 0.24712 220448
Wave:25:LS-P:500 6p 0.16587 0.18736 1097015
Wave:25:NS-P:500 24p 0.17971 0.22286 2824953
Wave:25:LS:NS-P:500 10p 0.16333 0.19930 1777974
MLR NA 0.76773 0.77197 NA

Fastest Good Wave :
Wave:25:Norm;p:100 3 p 0.35231 0.37657 51693

Table 3: Experimental results on Poly-10 dataset.

Method Moment Train Test Nodes

SGP:LS-P:500 71g 0.02377 0.02395 2234774
SGP:NS-P:500 81g 0.05738 0.05897 2731481
Wave:25:LS-P:100 7p 0.00698 0.00999 258080
Wave:25:NS-P:100 25p 0.10738 0.11704 3267500
Wave:200:LS-P:25 6p 0.02829 0.03099 15358
Wave:25:LS-P:500 6p 0.00442 0.00484 1050492
Wave:25:NS-P:500 23p 0.07700 0.08441 2143142
Wave:25:LS:NS-P:500 9p 0.00424 0.00480 1508355
MLR NA 0.71604 0.71736 NA

Fastest Good Wave :
Wave:25:LS;p:100 3 p 0.01808 0.02098 78061

Table 4: Experimental results on Div-5 dataset.

outperforms all chosen benchmarks on three out of the four
data-sets, and among Wave setups, is only outperformed by
Wave:25:LS-P:500 on the poly-10 problem. The heterogen-
ity within the wave proves particularly useful because linear
scaling does not always produce the best results. A mixed
approach using the Wave paradigm appears to be a more
flexible strategy that produces consistently good results.
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