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ABSTRACT
Current robust optimisation techniques can be divided into
two main groups: algorithms that rely on previously sam-
pled points versus those that need additional function eval-
uations to confirm robustness of solutions during optimisa-
tion. This paper first identifies and investigates the draw-
backs of these two methods: unreliability for the first and
excessive computational cost for the second. A novel ap-
proach is then proposed to alleviate the drawbacks of both
methods. The proposed method considers the number of
suitable, previously sampled points in the parameter space
as a key metric to decide whether a solution can be assumed
to be a robust solution when relying on previously sampled
points. This factor is treated as a constraint that prevents
solutions with low numbers of suitable, previously sampled
points from participating in the improvement of the next
population. To prove the effectiveness of the proposed al-
gorithm, the proposed method is implemented for Particle
Swarm Optimisation (PSO) and applied to several test func-
tions from the literature. The results show that the proposed
approach is able to effectively improve the reliability of al-
gorithms that rely of previously sampled points without the
need for extra function evaluations.
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1. INTRODUCTION
The current robust optimization techniques [2, 6, 1, 3] can

be divided into two main groups: algorithms that rely on
previously sampled points versus those that need additional
function evaluations to confirm robustness of solutions dur-
ing optimisation. The literature lacks consideration of the
status of sampled points in the vicinity of trial solutions
during optimisation. This paper first identifies and investi-
gates the drawbacks of these two methods: unreliability for
the first and excessive computational cost for the second. A
novel approach is then proposed to alleviate the drawbacks
of both methods. It should be noted that this work only
concentrates on handling uncertainty in parameters.

2. PROPOSED METHOD
Basically, the status of sampled points is defined based

on the number, distribution, and distance to the trial so-
lution. The best and most desirable case is to have many
sampled points in the proximity of trial solutions with a uni-
form distribution. Among these three factors, the number
of sampled points is more important. This is because the
majority of meta-heuristics randomly explore and exploit
the search space, so the distribution of the sampled points
during optimisation can be considered as approximately uni-
form, given a sufficiently large number of samples. Also, the
robustness of solutions is usually investigated based on the
maximum possible perturbation in parameters, so the neigh-
bourhood of a solution, within which robustness should be
investigated, is fixed during optimisation. Therefore, the
distance of sampled points in the neighbourhood to the trial
solution is not as important as their existence. However, the
number of sampled points in the neighbourhood of solutions
is very important due to its substantial impact on the ro-
bustness of solutions. An algorithm that assumes there is
always enough sampled points near all trial solutions will
fail to decide whether a solution is non-robust when there is
no desired sampled solutions.

The number of sampled points is considered and empha-
sised in this paper. As the number of sampled points in-
creases, obviously the reliability of an implicit method rises.
However, it is not obvious how many sampled points is suf-
ficient to reliably calculate the robustness of solutions. To
consider the number of suitable sampled points during opti-
misation, this paper considers it as a constraint as follows:

c(~x) = H (1)

where H is the number of sampled points in the vicinity of
x solution.
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3. RESULTS
This section first integrates the proposed method in a PSO

algorithm [4] and names it Constraint-Based Robust PSO
(CBRPSO). This algorithm is then applied to several test
functions to benchmark its performance. The mechanism
of CBRPSO is identical to that of a normal PSO, but an
expectation measure is employed that calculates the average
of a solution and the sampled points in the vicinity. All the
sampled points are stored in a repository and used to decide
the robustness of solutions. The results are compared to an
RPSO with the same robustness measure and repository for
verification. As case studies, 8 functions are collected from
the literature [5]. It should be noted that the 10-dimensional
version of all test functions are employed and we utilise 20
search agents over 150 iterations to approximate their robust
optima.

The average and standard deviation of the difference be-
tween the optimum obtained and the robust optimum (|X∗−
X|) over 30 runs are presented in Table 1. This table shows
that the CBRPSO exhibits much better performance on the
majority of the test functions. The first pattern that can be
seen in the results is the high discrepancy of the results on
the unimodal robust test functions. The proposed constraint
discards non-robust solutions, so the exploitation of non-
robust optima is intrinsically lower than the normal RPSO.
This fact causes failure of the CBRPSO in obtaining robust
optima of one unimodal test function. Since the CBRPSO
performs better than RPSO in the multi-modal test func-
tions, however, it seems that the lower exploitation is not a
substantial issue. In fact, a lower level of exploitation can
prevent the CBRPSO from stagnation in non-robust optima
during optimisation. Fig. 1 shows that the centralised and
guided exploration and exploitation of the proposed method
is good enough to cover the promising regions of the search
space. Table 1 shows that the discrepancy of the results be-

                 

     
 

Figure 1: Centralised and guided exploration and
exploitation of CBRPSO when solving TP1 and TP2

tween CBRPSOP and RPSO on the multi-modal test func-
tions is also noticeable. The CBRPSO tends to outperform
the RPSO algorithm on the majority of the test functions.
This is due to the fact that the proposed constraints make
non-robust solutions infeasible and prevent them from de-
ceptively leading other particles toward non-robust regions
of the search space. To further investigate the effects of the
proposed constraints on discarding non-robust solutions, we
monitored the number of times that there was less than 1
or 4 sampled points in the neighbourhood of solutions. It
was observed that the proposed constraint discards the non-
robust solution in nearly 73 % and 67 % of the times on
average when considering the minimum of 1 and 4 sampled
points respectively. This shows that the robust algorithms
that rely on previously sampled points are highly prone to

Table 1: Statistical results in the form of ave± std.
Test case RPSO CBRPSO

TP1 0.0609± 7.51E − 05 0.45± 0.199
TP2 0.9600± 4.80E − 05 0.0350± 0.0015
TP3 0.3500± 2.78E − 05 0.7950± 0.077
TP4 0.37± 2.306E − 05 0.299± 0.069
TP5 8.52± 1.3155 3.494± 0.84
TP6 7.278± 0.496 7.0550± 0.189
TP7 16.216± 0.344 15.636± 0.3118
TP8 128.989± 0.169 82.643± 17.360

wrongly assuming non-robust solutions as robust due to the
lack of sampled points. The results show that the proposed
constraint is able to prevent an algorithm from favouring
non-robust solutions during optimisation.

4. CONCLUSIONS
The results showed that the current robustness measure

and robust optimisation that relies on previously sampled
points can be very vulnerable. From the results of the pro-
posed CBRPSO algorithm, however, considering the num-
ber of sampled points as a constraint is able to improve the
reliability of such methods significantly. The experimental
results presented in this paper demonstrated that the pro-
posed constraint prevents implicit sampling methods from
making unreliable decisions during optimisation. Although
making particles infeasible reduces exploration and exploita-
tion, the results showed that this can be an advantage to
prevent particles from being attracted toward non-robust
solutions.
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