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ABSTRACT
Genetic programming (GP) is widely used for constructing
models with applications in control, classification, regres-
sion, etc.; however, it has some shortcomings, such as gen-
eralization. This paper proposes to enhance the GP gen-
eralization by controlling the first order derivative of GP
trees in the evolution process. To achieve this goal, a multi-
objective GP is implemented. Then, the first order deriva-
tive of GP trees is considered as one of its objectives. The
proposed method is evaluated on several benchmark prob-
lems to provide an experimental validation. The experi-
ments demonstrate the usefulness of the proposed method
with the capability of achieving compact solutions with rea-
sonable accuracy on training data and better accuracy on
test data.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming
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1. INTRODUCTION
Improving generalization ability and avoiding overfitting

with concerning the complexity of GP trees has been al-
ready considered in previous papers. Researchers proposed
different complexity measures, e.g., variance functional [4],
estimation of nonlinearity [6], estimation of curvature [5],
variance [1] and Tikhonov regularization [3]. In this paper,
the first order derivative of GP trees is considered as a sim-
ple and effective method of complexity control for improving
GP generalization.

2. PROPOSED METHOD
Suppose that the data set D =

[
(xi1, . . . , xim; yi)

]n
i=1

con-
tains n samples, where xi = (xi1, ..., xim) represents all in-
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dependent variables of dimension m and yi is the dependent
variable. The goal of symbolic regression is to find a func-
tion that maps x to y, i.e. y = f(x). However, usually the
exact mapping is not possible. So the goal changes to find
ỹ = f̃(x) that minimizes the Equation 1, known as Root
Mean Squared Error (RMSE).

RMSE =

√√√√ 1

n

n∑
i=1

(ỹi − yi)2 (1)

In order to avoid overfitting, when minimizing RMSE,
complexity control is one of the suggested techniques. In
this paper, an MOGP is used to optimize both the accuracy
and the complexity of GP trees. The accuracy is the RMSE
between y and ỹ, like many other GP papers, but unlike
previous research, the complexity is a simple measure, i.e.
the RMSE between the first order derivative of the desired
solution, y′, and the first order derivative of GP tree, ỹ′.
Although y′ is not provided by the data set D, it can be
numerically estimated by Equation 2. Evidently, for multi-
variate functions (functions with more than one independent
variable), at every point, the directional derivative in direc-
tion of its nearest point is estimated, Equation 3. We can
only estimate the derivative in direction of points that are
available in the data set D and for other directions we don’t
have any information.

y′i =
df

dx
= lim

h→0

f(xi + h)− f(xi)

h
(2)

y′i = 5vif(xi) = lim
h→0

f(xi + hvi)− f(xi)

h|vi|
(3)

On the other hand, the directional derivative of GP tree
at every point, ỹ′, in direction of its nearest point is the
dot product between the gradient and a unit vector that
indicates the direction of its nearest point, Equation 4. As
the gradient is the vector of partial derivatives, to calculate
ỹ′, partial derivatives must be calculated.

ỹ′i = 5vi f̃(xi) = 5f̃(xi).
vi
|vi|

(4)

RMSEy′ =

√√√√ 1

n

n∑
i=1

(ỹ′i − y′i)
2 (5)

The partial derivatives of any GP tree with respect to its
variables are simply obtained by the chain rule and a re-
cursive procedure. There is one rule for each function in
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Table 1: Recursive rules for computing the partial
derivatives of GP trees.

Node Function of Node Derivative of Node

ADD LST i + RST ii LST ′ + RST ′

SUB LST −RST LST ′ −RST ′

MUL LST ×RST LST ′×RST +LST×RST ′

DIV LST
RST

LST ′×RST−LST×RST ′

RST2

AQ[2] LST√
1+RST2

LST ′×(1+RST2)

(1+RST2)
√

1+RST2
−

LST×RST ′×RST

(1+RST2)
√

1+RST2

variable value of variable 1 or 0 iii

constantvalue of constant 0
i/ii the result of left/right subtree
iii in multivariate functions, the partial derivative of a
variable with respect to itself is 1 and with respect to
other variables is 0

function set in order to compute its derivative. These rules
are summarized in Table 1 and can be extended as needed.
It should be noted that, if a variable does not attend to a
GP tree, the partial derivative with respect to it, is zero and
does not need to be computed. For example, in the case of
Toxicity problem with 626 input variables only 8-10 partial
derivatives need to be computed and other partial deriva-
tives are zero. Finally, the complexity of GP tree is con-
trolled with Equation 5. Then these two objectives, Equa-
tion 1 and Equation 5, are used in an MOGP for application
of symbolic regression.

3. EXPERIMENTAL RESULTS
Here, the experimental parameters are: # of runs = 30,

population size = 200, termination condition = 2× 104 fit-
ness evaluations, crossover probability = 0.9, probability of
point mutation = 0.02, tournament size = 10, initializa-
tion depth limit = 4, depth limit = 20, and function set =
{+,−,×, AQ[2]}. Instead of division operator, analytic quo-
tient (AQ) operator [2] is used in order to ensure removing
protected/unprotected division discontinuities and achiev-
ing the differentiability. The terminal set consists of vari-
ables and 100 random real constants. The fitness function
is Equation 1 in single objective approach and Equation 1
and Equation 5 in multi-objective approach. For MOGP, an
algorithm like NSGA-II with considering the characteristic
of GP is implemented.

The proposed method has been tested on some real world
regression problems that are also used in [1]. The data set
of each benchmark problem is divided to the 50% training
data and 50% test data. In Table 2, the training/test error
of the best GP trees found after 2× 104 fitness evaluations
and the average size of the individuals in population (avg
size) for both the standard GP and the proposed method
are demonstrated. The solutions achieved by the proposed
algorithm are smaller in size for all benchmark problems.
The training/test error of the proposed method in the case
of Concrete and Pollen benchmark problems are better than
the standard GP. In the case of Toxicity and Bioavailability
benchmark problems, the test error of the proposed method
is better than the test error of the standard GP. It indicates
that in comparison to the standard GP, the proposed al-

Table 2: Comparison between the proposed method
and the standard GP in terms of average train-
ing/test error (RMSE) over 30 independent runs
and the average size of the individuals in population
after 2× 104 fitness evaluations.

Benchmark training error test error avg size
Toxicity
StGP 1726.3± 136.6 2198.9± 54.86 277.27
proposed method 1846.67± 50.42 2191.14± 77.21 89.39
Bioavailability
StGP 27.38± 1.81 30.67± 1.83 257.8
proposed method 30.69± 0.76 29.52± 0.91 65.5
Pollen
StGP 2.31± 0.59 2.33± 0.58 162.03
proposed method 1.52± 0.23 1.55± 0.22 105.23
Concrete
StGP 12.73± 3.23 12.96± 2.91 164.7
proposed method 11.31± 1.73 11.69± 1.51 105.57

gorithm have better generalization ability and the standard
GP is more at the risk of overfitting. The results show that
Equation 5 is a useful measure to select smaller solutions
and to prevent overfitting.

4. CONCLUSION
Avoiding overfitting using the first order derivative of GP

trees is a simple and effective idea. By adding this objective
in the evolution process, the solutions (GP trees) that overfit
to the training data, are rejected. The results of the test er-
ror on the benchmark problems support the effectiveness of
the proposed method. They have shown that the proposed
method could find solutions with better generalization abil-
ity than the standard GP. Moreover, the proposed method
achieves smaller solutions.
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