
Fast Pareto Front Approximation for Cloud Instance Pool
Optimization

Ana-Maria Oprescu
Dept. of Computer Science

Vrije Universiteit, Amsterdam,
The Netherlands

A.M.Oprescu@vu.nl

Alexandra (Vintila) Filip
Dept. of Computer Science

Vrije Universiteit, Amsterdam,
The Netherlands

A.A.Vintila@vu.nl

Thilo Kielmann
Dept. of Computer Science

Vrije Universiteit, Amsterdam,
The Netherlands

Thilo.Kielmann@vu.nl
ABSTRACT
Computing the Pareto Set (PS) of optimal cloud schedules in
terms of cost and makespan for a given application and set
of cloud instance types is NP-complete. Moreover, cloud in-
stances’ volatility requires fast PS recomputations. While
genetic algorithms (GA) are a promising approach, little
knowledge of an approximated PS’s quality leads to GAs run-
ning for overly many generations, contradicting the goal of
quickly computing an approximate solution. We address this
with MOO-GA, our GA enhanced with a domain-tailored ter-
mination criteria delivering fast, well-approximated Pareto
sets. We compare to NSGAIII using PS convergence and
diversity, and computational effort metrics. Results show
MOO-GA consistently computing better quality Pareto sets
within one second on average (df=98, p-value<10−3).

CCS Concepts
•Networks → Cloud computing; •Computing methodologies
→ Genetic algorithms; •Mathematics of computing → Evolu-
tionary algorithms;

1. INTRODUCTION
Dominant in high-throughput computing, bag-of-tasks ap-

plications are computationally demanding and may seem an
ideal match for commercial cloud offerings [1]. However, al-
locating the right number of instances, of the right type, for
the right time, strongly depends on the application, and is
left to the user. State-of-the-art cloud scheduler BaTS [2]
and its fast GA approximate within seconds Pareto sets of
makespan-cost options [3]. However, this GA lacks an adap-
tive termination criterion enforcing solution quality.

The well-known GA termination problem is difficult. State-
of-the-art algorithms [4, 5], including NSGAIII [6], still use
either a maximum number of generations or a maximum
number of objective function evaluations. Some [7, 8, 9]
studied meta performance indicators, statistically detecting
their convergence. In contrast, we satisfy the need for qual-
ity assessment reflecting the problem domain [10] with a new
termination criteria, based on our problem domain: cloud
scheduling. We develop MOO-GA by enhancing BaTS’ GA

with our new termination criteria, to achieve fast, quality-
controlled cloud instance pool optimization.
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We compare MOO-GA to NSGAIII and exact Pareto sets
in terms of both quality and computational effort. MOO-GA

generally outperforms NSGAIII for all metrics.

2. MOO-GA’S TERMINATION CRITERIA
TAILORED FOR CLOUD SCHEDULING

GA termination represents a trade-off between the quality
of the Pareto set(PS) - deteriorated by premature termina-
tion, and the wasted computation - caused by excessive iter-
ations not improving the PS quality. As GAs are stochastic,
we need robust metrics. Usually GAs have too little informa-
tion to easily compute the utopic point, used by some quality
metrics. Using BaTS’ sampling phase results, we compute
the cheapest (CP) and the fastest (FP) points (schedules) [2],
valid for both the estimated and the real PSs. The utopic
point (UP) has the fastest makespan and the cheapest price.

Hyperarea Difference (HD) measures the distance be-
tween a PS and the (unknown) real one [11]. A lower HD
is better. In Eq. 1a the Hypervolume (HV) metric [12] is
strictly monotonic [9]. To compute the HV, we first scale
the objective space using the CP and FP points and then we
use Eq. 1b. As MOO-GA computes the HD at each iteration,
we derived a computationally fast HV expression(Eq. 1b).

HD = 1 − HV. (1a)
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Smallest Euclidean Distance to Utopic Point (DUP)
is a companion metric to the HD, using problem space (cloud
scheduling) knowledge to allow earlier termination without
considerable loss of quality. We compute DUP as the min-
imum Euclidean distance to UP from any PS solution. In-
tuitively, once MOO-GA finds two consecutive PSs with the
same HD (stagnation phase), it may be close to a ”good-
enough” PS. Here, the DUP enables fine-tuning the PS qual-
ity: MOO-GA terminates once two consecutive PSs have the
same DUP. As HD decreases monotonically, newer PSs’ qual-
ity cannot degrade compared to the stagnation phase PS.

DUP =
n

min
i=1

√
(ci − ccheapest)2 + (ti − tfastest)2 (2)

3. EVALUATION AND DISCUSSION
We compare the MOO-GA fast, well-approximated Pareto

sets (PS) of cloud schedules to the exact PS [3] and the NS-

GAIII [13] approximations. Chosen PS metrics show domain-
specific desired qualities and computational metrics, timeli-
ness. Test problems are domain-specific workloads [3].
Workloads: An on-demand instance type (OD) has an
hourly price and execution speed; its related spot type (S)
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Table 1: IGD, HD, DSC and DSF average and stdev values

Cfg

IGD HD DSC DSF
MOO-GA NSGAIII MOO-GA NSGAIII

Real
MOO-GA NSGAIII MOO-GA NSGAIII

avg stdev avg stdev avg stdev avg stdev avg stdev avg stdev avg stdev avg stdev
20 0.0235 0.0031 0.0755 0.0191 0.0829 0.0019 0.2591 0.0633 0.0622 0.0094 0.0202 0.6262 0.0446 0.1191 0.0677 0.1061 0.0411

100 0.0450 0.0151 0.1103 0.0262 0.1281 0.0341 0.2037 0.0958 0.0685 0.0702 0.0983 0.4731 0.0495 0.0342 0.0204 0.4711 0.0661
40 0.0183 0.0043 0.0674 0.0106 0.0231 0.0100 0.0605 0.0458 0.0157 0.0195 0.0512 0.2281 0.0235 0.1499 0.0510 0.5320 0.0364

Table 2: Spread, NDC and Cluster average and stdev values

Cfg

Spread NDC Cluster
MOO-GA NSGAIII Real MOO-GA NSGAIII

Real
MOO-GA NSGAIII

Realavg stdev avg stdev avg stdev avg stdev avg stdev avg stdev
20 0.6801 0.1054 0.0637 0.0165 0.6742 29.1000 2.4432 17.7200 1.6167 35 1.6814 0.1524 4.1138 0.1626 3.5714

100 0.6456 0.1909 0.0452 0.0171 0.6228 21.5600 3.2461 12.5000 1.9614 29 1.5618 0.1829 2.6143 0.3697 4.2414
40 0.4148 0.1975 0.0128 0.0024 0.2619 21.4800 2.6821 11.5000 0.9742 26 2.0510 0.2785 5.3712 0.7074 5.3462

Table 3: Runtime and NFE average and stdev values

Cfg

Runtime (milisec) NFE
MOO-GA NSGAIII

Real
MOO-GA NSGAIII

avg stdev avg stdev avg stdev avg stdev
20 387 190 2765 859 55882 44317 13096 44372 13097

100 222 131 2616 1314 1532563 44387 22032 44440 22037
40 352 156 2476 698 970438 45009 11835 45054 11830

Table 4: T-score values
Cfg Cluster NDC Spread IGD HD DSC DSF
20 -76.40 -27.19 -40.43 -18.79 -19.46 -88.24 1.14

100 -17.86 -16.72 -21.93 -15.10 -5.20 -25.61 -44.22
40 -30.57 -24.48 -14.24 -30.14 -5.57 -25.94 -42.66

has similar speed, but different price. The ODs run tasks
according to 1) sampled execution speed [2] at $0.020; 2) 2x
faster at $0.065; 3) 3x faster at $0.130; the related S types
cost $0.003, $0.007 and $0.013. A OD-S setup has at most
100 instances with at most OD={20,40,100}, S={20,60,100}.
Parameters: NSGAIII’s pop size=100 and p=4 [6]. MOO-
GA’s pop size=2000, elitism percentage pe=30%, number of
pairs extracted for crossover=30% of the pop size and mu-
tation probability of a gene=1/15000. BLX-a crossover uses
a =0.3, NDC and Cluster use µ =0.05.
Metrics: a)convergence: Inverse generational distance(IGD)
[6], b)diversity and significance trade-offs: Number of
Distinct Choices(NDC), Cluster(CL) and Pareto Spread -
higher NDC [11], lower CL and wider Spread [11] are pre-
ferred and c)computational effort: Number of function
evaluations (NFE) and Runtime - MOO-GA’s adaptive ter-
mination criteria varies the NFE across different runs and for
fairness we run NSGAIII with maxNFE=MOO-GANFE. How-
ever, NSGAIII will actually run [13] until NSGAIIINFE>maxNFE.
Evaluation results: We run each setup (Cfg) fifty times
on DAS4 [14] standard compute nodes and report the average
and standard deviation. Tables 1, 2 and 3 show all results.
Table 4 shows the statistical significance scores. MOO-GA

generally outperforms NSGAIII for all metrics. Low MOO-

GA HD variability mean the metric is problem size indepen-
dent and robust to stochasticity, confirming its use in MOO-

GA’s termination criteria. MOO-GA Spread larger than the
real PS Spread means MOO-GA PS contains solutions be-
yond the real PS and we study the distance between the sec-
ond most extreme real solution and its closest solution from
the approximated PS. MOO-GA counterparts are closer to
the real schedules than the NSGAIII ones, except the second
fastest solution in the 20 setup. The MOO-GA NDC is lower
than real PS NDC, but the MOO-GA CL outperforms the real
PS CL, thus providing a representative approximated PS.

Notably, MOO-GA reduced the execution time for any con-
sidered setup to less than 1 second on average. The NSGAIII

is at least 5 times slower than MOO-GA, while the exhaus-
tive search takes as long as 25 minutes.

4. CONCLUSIONS
Cloud infrastructure volatility (e.g., fluctuating spot mar-

ket prices) requires quick recomputation of Pareto sets of
makespan-cost pairs corresponding to various cloud instance

pools. In this work, we introduced heuristics derived from
cloud scheduling to help MOO-GA, our extended genetic al-
gorithm [3] used by BaTS [2], deliver fast, well-approximated
Pareto sets. Results show that exact Pareto set computation
is unfeasible for online instance pool re-configuration, while
our heuristics-enhanced MOO-GA computes controllable-quality
approximations in less than one second time and of better
quality than state-of-the-art NSGAIII. We also show how
domain knowledge greatly improves the quality and perfor-
mance of a genetic algorithm. We plan to focus on application-
specific objectives and domain-specific metrics, further in-
creasing the diversity of Pareto set approximations.
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