
Cartesian Genetic Programming Approach for Generating
Substitution Boxes of Different Sizes

Stjepan Picek
Faculty of Electrical

Engineering and Computing
University of Zagreb, Croatia
stjepan@computer.org

Julian F. Miller
Department of Electronics

University of York, UK
julian.miller@york.ac.uk

Domagoj Jakobovic
Faculty of Electrical

Engineering and Computing
University of Zagreb, Croatia

domagoj.jakobovic@fer.hr
Lejla Batina

Radboud University
Nijmegen, The Netherlands

lejla@cs.ru.nl

ABSTRACT
Substitution Boxes (S-boxes) play an important role in many
modern-day cryptography algorithms. Indeed, without care-
fully chosen S-boxes many ciphers would be easy to break.
The design of suitable S-boxes attracts a lot of attention
in cryptography community. The evolutionary algorithms
(EAs) community also had several attempts to evolve S-
boxes with good cryptographic properties. When using EAs
one usually uses permutation representation in order to pre-
serve the bijectivity of the resulting S-boxes. In this paper
we experiment with Cartesian Genetic Programming (CGP)
and Genetic Programming (GP) in order to evolve bijective
S-boxes of various sizes that have good cryptographic prop-
erties. Besides the standard CGP representation, we use an
approach that allows CGP and GP to be mapped to the
permutation encoding.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelligence—
Problem Solving, Control Methods, and Search

Keywords
S-box, Cryptograpy, Cartesian Genetic Programming, Ge-
netic Programming, Permutation Encoding, Bitstring En-
coding

1. INTRODUCTION
For secure data transmission, most often a symmetric-key

cryptography is used, and more precisely block ciphers [9].
All block ciphers need some nonlinear element to be secure.
A well known element of this kind is the Substitution Box

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’15 July 11-15, 2015, Madrid, Spain
c© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3488-4/15/07.

DOI: http://dx.doi.org/10.1145/2739482.2764698

(S-box). S-boxes may be considered as an array of Boolean
functions (vectorial Boolean functions).

Two most popular sizes for S-boxes are 4×4 and 8×8. The
first S-box size is usually used in lightweight cryptography
that is primarily intended for the constrained environments;
an example of such lightweight cipher is PRESENT [2]. On
the other side, 8×8 size S-boxes are used when speed and se-
curity of a cipher are of primary importance; as an example
consider the AES algorithm [5]. For a detailed description
of relevant S-box properties, we refer the reader to [3,4,6–8]

In this paper we investigate the efficiency of two algo-
rithms previously unexplored when discussing the evolution
of S-boxes. Those algorithms are Cartesian Genetic Pro-
gramming (CGP) and Genetic Programming (GP). Further-
more, as a baseline case we experiment with a Genetic Al-
gorithm (GA).

2. EXPERIMENTAL SETUP AND RESULTS
We experiment with two S-box encodings: the first one is

permutation encoding, where n × n S-box is defined as
an array of 2n integer numbers with values between 0 and
2n − 1. The main advantage of the permutation encoding is
that the bijectivity property is automatically preserved
and this encoding is used with simple GA as a baseline.

The second encoding uses CGP and GP; To be able to
represent n× n S-box with CGP, we need a CGP genotype
that has n inputs and n outputs (8 in our case). Each output
can be regarded as a single Boolean function that has its
truth table representation.

However, these outputs cannot be used to directly con-
struct an S-box truth table, because there is no guarantee
that they will represent a bijective S-box. Instead, we can
use them to construct a valid permutation, which in turn de-
scribes the behavior of the S-box. This approach allows us to
have balanced (bijective) solutions even when the truth table
based on the original outputs is not balanced. To translate
from these multiple outputs to the permutation encoding we
use Algorithm 1. In this algorithm, the initial permutation
is constructed in an array balanced[] and is then permuted
according to the decoded values of the CGP outputs. With
GP we follow the same approach, only here we need to evolve
n independent trees.

The function set for CGP is OR, XOR, AND, XNOR and

1457



Algorithm 1 Translate to permutation encoding.

Require: i = 0, m = input size, n = output size
for all values i < 2n do

balanced[i] = i
for j = n-1; j != 0; j– do

evolved[i] = evolved[i] + truth table[i][j]*(2j)
end for

end for
SORT balanced[] array using evolved[] array as key
for all values i < 2n do

for j = n-1; j != 0; j– do
truth table[i][j] = (balanced[i] * 2j) & 0x01

end for
end for

Table 1: Average fitness, fitness1, CGP.
Gen./mut. 1 4 7 10 13

100 296.6 308.56 309.92 298 294.36
500 341.56 341.64 341.44 341.76 341.76
900 340.44 342.8 342.36 342.72 342.48
1 300 342.76 342.8 342.84 343.12 343.08
1 700 342.96 343.6 343.36 343.24 343.28

AND with one input inverted. The number of input connec-
tions nn for each node is two and the number of program
output connections no is one. For number of rows and levels-
back parameter we use the most common choice [1]. In this
setting levels-back parameter is set to be equal to the num-
ber of columns and number of rows is 1. The function set for
the GP is the same as for the CGP in order to give as fair as
possible experimental treatment. The terminals correspond
to n Boolean variables. The number of independent trials
is 50 and stopping criterion is 500 000 evaluations for each
experiment.

We aim to evolve S-boxes that have as high as possible
nonlinearity property and as low as possible δ-uniformity;
the fitness function to maximize is:

fitness1 = nonlinearity + (2n − δ). (1)

For further information about S-boxes and their crypto-
graphic properties, we refer readers to [5, 7, 8].

For 4×4 S-box size all three algorithms reach the optimal
value so we do not present the statistics here. When experi-
menting with the 8×8 size, average fitness values for different
mutation rates and genotype sizes for CGP are given in Ta-
ble 1. The best value of 344 corresponds to the nonlinearity
of 98 and δ-uniformity of 10. Average fitness values for GP
with population size 500 are presented in Table 2.

GP with tree depths 5 and 7 reaches the maximal value
of 346 which corresponds to the nonlinearity of 100 and δ-
uniformity of 10. This set of values is also the best we found
for the 8 × 8 size. The average fitness when experimenting
with GA equals 342.5 with a maximal value of 344 (corre-
sponding to the nonlinearity 98 and δ-uniformity 10).

When discussing the results, the first conclusion we can
reach is that CGP and GP can be used to evolve S-boxes.

Table 2: Average fitness, fitness1, GP.
Pop./depth 3 5 7

500 342.02 343.97 344.05

When comparing the EAs, we see that all three algorithms
perform similarly, with occasional better solution for one or
other algorithm.It is somewhat surprising that GP performs
so well in comparison with CGP since it needs to evolve
independent trees which is not easy task for larger S-box
sizes.

Summary and Future Work.
In this paper we investigate how to use CGP and GP al-

gorithms to evolve S-boxes of various sizes. We present an
approach which transforms any CGP/GP output into a valid
permutation, which is used to encode an S-box. As far as the
authors are aware, this is the first usage of permutation en-
coding with GP. Further work will concentrate on evolution
of S-boxes with regards to the area/speed perspective where
we also plan to actually implement and test such evolved
solutions.

3. REFERENCES

[1] In J. F. Miller, editor, Cartesian Genetic Programming,
Natural Computing Series. Springer Berlin Heidelberg,
2011.

[2] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar,
A. Poschmann, M. J. Robshaw, Y. Seurin, and
C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block
Cipher. In Proc 9th Int Workshop on Cryptographic
Hardware and Embedded Systems, CHES ’07, pages
450–466. Springer-Verlag, 2007.

[3] L. D. Burnett. Heuristic Optimization of Boolean
Functions and Substitution Boxes for Cryptography.
PhD thesis, Queensland University of Technology, 2005.

[4] J. A. Clark, J. L. Jacob, and S. Stepney. The design of
S-boxes by simulated annealing. New Generation
Computing, 23(3):219–231, Sept. 2005.

[5] J. Daemen and V. Rijmen. The Design of Rijndael.
Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2002.

[6] S. Picek, B. Ege, L. Batina, D. Jakobovic,
L. Chmielewski, and M. Golub. On Using Genetic
Algorithms for Intrinsic Side-channel Resistance: The
Case of AES S-box. In Proceedings of the First
Workshop on Cryptography and Security in Computing
Systems, CS2 ’14, pages 13–18, New York, NY, USA,
2014. ACM.

[7] S. Picek, B. Ege, K. Papagiannopoulos, L. Batina, and
D. Jakobovic. Optimality and beyond: The case of 4x4
s-boxes. In 2014 IEEE International Symposium on
Hardware-Oriented Security and Trust, HOST 2014,
Arlington, VA, USA, May 6-7, 2014, pages 80–83, 2014.

[8] S. Picek, K. Papagiannopoulos, B. Ege, L. Batina, and
D. Jakobovic. Confused by confusion: Systematic
evaluation of DPA resistance of various s-boxes. In
Progress in Cryptology - INDOCRYPT 2014 - 15th
International Conference on Cryptology in India, New
Delhi, India, December 14-17, 2014, Proceedings, pages
374–390, 2014.

[9] B. Schneier. Applied cryptography (2nd ed.): protocols,
algorithms, and source code in C. John Wiley and Sons,
Inc., New York, NY, USA, 1995.

1458




