
Denoising Autoencoders for Fast
Combinatorial Black Box Optimization

Malte Probst
University of Mainz

Dept. of Information Systems and Business Administration
Mainz, Germany

probst@uni-mainz.de

ABSTRACT

We integrate a Denoising Autoencoder (DAE) into an Esti-
mation of Distribution Algorithm (EDA) and evaluate the
performance of DAE-EDA on several combinatorial opti-
mization problems. We asses the number of fitness eval-
uations and the required CPU times. Compared to the
state-of-the-art Bayesian Optimization Algorithm (BOA),
DAE-EDA needs more fitness evaluations, but is consider-
ably faster, sometimes by orders of magnitude. These results
show that DAEs can be useful tools for problems with low
but non-negligible fitness evaluation costs.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning—Neural Networks;
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

Keywords

Autoencoder; Estimation of Distribution Algorithms; Com-
binatorial Optimization Problems; Neural Networks

1. INTRODUCTION
EDAs are metaheuristics for combinatorial and continu-

ous non-linear optimization. They improve a population of
solutions over consecutive generations [5]. In each genera-
tion, they approximate the dependency structure between
the decision variables using a probabilistic model and use it
to sample new candidate solutions. By repeated model es-
timation, sampling, and selection, EDAs can solve difficult
optimization problems.
We integrate a DAE [12], a special type of neural network,

as EDA model. We assess its performance on multiple stan-
dard benchmark problems from combinatorial optimization
and include results for BOA [8] for comparison.

2. AUTOENCODERS
An Autoencoder (AE) AE has a visible layer x ∈ [0, 1]n, a

hidden layer h ∈ [0, 1]m, and an output layer z ∈ [0, 1]n,
which are connected by two deterministic functions: the
encoding function h = c(x; θ) and the decoding function

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

GECCO ’15 July 11-15, 2015, Madrid, Spain

c© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3488-4/15/07.

DOI: http://dx.doi.org/10.1145/2739482.2764691

Algorithm 1 Pseudo code for training an Autoencoder

1: Initialize θ = {W, bh, bz} randomly, set 0 < α < 1
2: while not converged do

3: for each example i in the training set do

4: θ := θ − α ∗ δErr(xi,z)
δθ

, with z = f(c(xi; θ); θ)
5: end for

6: end while

7: (for training a DAE, replace xi with q(x̂i|xi) in line 4)

Algorithm 2 Pseudo code for sampling a DAE

1: Given θ = {W, bc, bf}, c(·), f(·), q(·)
2: Initialize x ∈ [0, 1]n randomly
3: for a fixed number s of sampling steps do

4: x := z = f(c(q(x̂|x); θ); θ)
5: end for

6: Use x as a sample from the DAE

z = f(h; θ′), with parameters θ, θ′. The training objective
of the AE is to find parameters θ, θ′ which minimize the re-

construction error Err(x, z), i.e., the difference between x
and z for all examples xi, i ∈ (1, . . . , τ) in the training set:

θ, θ
′ := argmin

θ,θ′

1

τ

τ∑

i=1

Err(xi
, z

i). (1)

A common choice for Err(x, z) is the cross entropy func-
tion Err(x, z) = −

∑n

k=1[xk ∗ log(zk) + (1 − xk) ∗ log(1 −
zk)], encoding and decoding functions are usually chosen
as c(x) = sigm(x ∗W + bh) and f(h) = sigm(h ∗W ′ + bz),
where sigm(x) = 1

1+e−x is the logistic function, W and W ′

are weight matrices of size (n×m) and (m×n), respectively,
and bh ∈ R

m, bz ∈ R
n are biases which work as offsets. Of-

ten, W and W ′ are tied, i.e., W ′ = W⊤. Then, the AEs
configurable parameters are θ = {W, bh, bz}.

Minimizing (1) is performed by using stochastic gradient
descent (SGD) algorithm (see Algorithm 1).

If m is large enough, a trivial way to solve (1) is to learn
the identity function where each xi is directly mapped to
the corresponding zi. A Denoising AE forces the model
to learn a more useful representation, using regularization
[12]. Each training example x is corrupted by a stochastic
mapping x̂ = q(x̂|x), i.e., we add random noise. The DAE
then calculates the reconstruction of the corrupted input as
z = f(c(x̂; θ); θ). The parameters are updated in the di-

rection of δErr(x,z)
δθ

. Hence, the DAE tries to reconstruct x
rather than x̂. Samples can be generated from the DAE
using the process proposed in [1] (see Algorithm 2). Note

1459



Problem Algorithm

Average results

Population size such that optimum
is found in ≥90% of runs

Evaluations Time (sec)
4-Traps
20 bit

BOA 3,150±391 189±31
DAE-EDA 3,075±1,798 52*±17

4-Traps
40 bit

BOA 11,350*±1,195 2,833±466
DAE-EDA 23,100±6,292 185*±33

4-Traps
60 bit

BOA 18,250*±1,445 10,811±1,165
DAE-EDA 41,050±2,783 449*±37

5-Traps
25 bit

BOA 9,550*±921 951±125
DAE-EDA 14,325±4,611 87*±17

5-Traps
50 bit

BOA 44,333±2,357 19,866±1,610
DAE-EDA 37,500±11,033 332*±74

5-Traps
75 bit

BOA 108,000±5,692 114,337±7,005
DAE-EDA 57,300*±4,529 871*±76

NK n = 30,
k = 4, i = 1

BOA 25,200±3,929 3,913±875
DAE-EDA 26,175±6,495 181*±47

NK n = 30,
k = 4, i = 2

BOA 66,800*±14,593 12,726±3,500
DAE-EDA 260,400±70,494 1,089*±308

NK n = 34,
k = 4, i = 1

BOA 20,700*±3,378 3,461±640
DAE-EDA 50,000±13,431 313*±88

NK n = 34,
k = 4, i = 2

BOA 58,950±10,230 11,974±2,151
DAE-EDA 30,650*±12,285 298*±85

NK n = 30,
k = 5, i = 1

BOA 12,450*±2,274 1,582±341
DAE-EDA 100,200±23,110 499*±166

NK n = 30,
k = 5, i = 2

BOA 54,450*±6,168 8,762±1,503
DAE-EDA 75,000±10,941 348*±61

NK n = 34,
k = 5, i = 1

BOA 242,400±35,517 64,622±11,539
DAE-EDA 73,950*±17,932 380*±114

NK n = 34,
k = 5, i = 2

BOA 271,200±57,349 74,570±20,228
DAE-EDA 179,100*±63,591 749*±307

HIFF64
BOA 11,825*±1,477 7,025±1,029

DAE-EDA 19,450±2,247 324*±31

HIFF128
BOA 39,350*±3,410 93,144±10,542

DAE-EDA 56,750±5,421 2,624*±151

Table 1: This table shows average values for fitness
evaluations and CPU time for DAE-EDA, and BOA for
the test problems. For each instance and algorithm,
we selected the minimal population size which lead to
the optimum in ≥ 90% of the runs. Results are aver-
aged over 20 runs. Results marked with (*) are signif-
icantly smaller, according to pairwise Wilcoxon signed-
rank tests (p < 0.01, data is not normally distributed)

that each sample is a vector x ∈ [0, 1]n. To turn this vec-
tor of real-valued elements into a candidate solution for the
EDA, i.e., a binary string, we sample each variable xi from
a Bernoulli distribution with p = xi.

3. EXPERIMENTAL SETUP
We use several instances from the standard benchmark

problems concatenated deceptive traps [2], NK landscapes
[3] and the HIFF function [13]. All three problems are com-
posed of subproblems, which are either deceptive (traps),
overlapping (NK landscapes), or hierarchical (HIFF), and
therefore multimodal. For each instance and algorithm, we
test 20 runs of popsize ∈ {50; 100; . . . ; 16, 000}. In each run,
the EDA is allowed to run for 100 generations and termi-
nates, if there is no improvement of the best solution for
more than 20 generations. We use tournament selection
without replacement of size two [6]. For the DAE, we choose
m = n, s = 10, and α = 0.2. The corruption process q(x̂|x)
randomly corrupts 10% of the inputs by setting them to 0 or
1. The batch size for SGD is b = 100. We apply the simple
parameter control scheme from [11] to determine when to
stop DAE training.
All algorithms are implemented in Matlab/Octave and ex-

ecuted using Octave V3.2.4 on a on a single core of an AMD
Opteron 6272 processor with 2,100 MHz.

4. RESULTS AND CONCLUSION
For each problem instance and algorithm, we select the

minimal population size which leads to the optimum in≥ 90%

of the runs. We report the average number of fitness eval-
uations and CPU time of those runs (see table 3).1 As ex-
pected, BOA has the better overall performance in terms of
fitness evaluations. However, most of the time the number
of fitness evaluations required by DAE-EDA is in the same
order of magnitude. The results suggest that DAE-EDA is
able to decompose the test problems properly, and solve the
parts independently. For all but one instance, DAE-EDA
is significantly faster than BOA, sometimes by multiple or-
ders of magnitude. This is due to the much quicker model
building and sampling of the DAE. Note that the direct
comparison of CPU times is not entirely fair for BOA, due
to the script-based programming language. However, most
recent implementations of neural networks are parallelized
on graphics processing units (GPU), yielding high speedups
(see e.g. [4]). Accordingly, in the optimization context, par-
allelizing a neural EDA model can yield very high speedups,
compared to other parallelizations [10, 7].

In sum, DAE-EDA can be a useful tool for solving complex
combinatorial optimization problems, where fitness evalua-
tion costs are low, but non-negligible.

5. REFERENCES
[1] Y. Bengio, L. Yao, G. Alain, and P. Vincent. Generalized

Denoising Auto-Encoders as Generative Models. In Advances
in Neural Information Processing Systems 26 (NIPS’13).
NIPS Foundation (http://books.nips.cc), 2013.

[2] K. Deb and D. E. Goldberg. Analyzing Deception in Trap
Functions. University of Illinois, Department of General
Engineering, 1991.

[3] S. A. Kauffman and E. D. Weinberger. The NK Model of
Rugged Fitness Landscapes and its Application to Maturation
of the Immune Response. Journal of theoretical biology,
141(2):211–245, 1989.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
Classification with Deep Convolutional Neural Networks. In
Advances in neural information processing systems, pages
1097–1105, 2012.

[5] P. Larrañaga and J. A. Lozano. Estimation of Distribution
Algorithms: A New Tool for Evolutionary Computation.
Genetic Algorithms and Evolutionary Computation, 2. Kluwer
Academic Pub, 2002.

[6] B. L. Miller and D. E. Goldberg. Genetic Algorithms,
Tournament Selection, and the Effects of Noise. Complex
Systems, 9:193–212, 1995.

[7] J. Očenášek and J. Schwarz. The Parallel Bayesian
Optimization Algorithm. In The State of the Art in
Computational Intelligence, pages 61–67. Springer, 2000.

[8] M. Pelikan. Bayesian Optimization Algorithm. In Hierarchical
Bayesian Optimization Algorithm, volume 170 of Studies in
Fuzziness and Soft Computing, pages 31–48. Springer Berlin /
Heidelberg, 2005.

[9] M. Probst. Denoising Autoencoders for Fast Combinatorial
Black Box Optimization. preprint on arXiv, arXiv:1503.01954,
2015.

[10] M. Probst, F. Rothlauf, and J. Grahl. An Implicitly Parallel
EDA Based on Restricted Boltzmann Machines. In Proceedings
of the 2014 Conference on Genetic and Evolutionary
Computation, GECCO ’14, pages 1055–1062, New York, NY,
USA, 2014. ACM.

[11] M. Probst, F. Rothlauf, and J. Grahl. Scalability of Using
Restricted Boltzmann Machines for Combinatorial
Optimization. preprint on arXiv, abs/1411.7542, 2014.

[12] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol.
Extracting and Composing Robust Features with Denoising
Autoencoders. In Proceedings of the 25th international
conference on Machine learning, pages 1096–1103. ACM, 2008.

[13] R. A. Watson, G. S. Hornby, and J. B. Pollack. Modeling
Building-Block Interdependency. In Parallel Problem Solving
from Nature - PPSN V, pages 97–106. Springer, 1998.

1For the more results including a univariate EDA, a neural
network based EDA and a DAE-based local search see [9]

1460




