
On the Uselessness of Finite Benchmarks to Assess
Evolutionary and Swarm Methods ∗

Pablo Rabanal, Ismael Rodríguez and Fernando Rubio
Facultad de Informática. Universidad Complutense de Madrid. 28040 Madrid, Spain
prabanal@fdi.ucm.es, isrodrig@sip.ucm.es, fernando@sip.ucm.es

ABSTRACT
We argue against the usage of known finite benchmarks to
compare the performance of swarm and evolutionary meth-
ods. The key of our criticism is that these methods support
a huge set of parameter values and available sub-steps which
can be selected and used, and this huge set of choices pro-
vides enough versatility to enable an ad-hoc tuning of the
method to the particular inputs to be solved (which does
not imply properly solving any input not considered in the
benchmark). As an alternative, we propose using random
input generators rather than known finite benchmarks.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelligence—
Search Methodologies

Keywords
Over-Tuning, Random Benchmarks, Bio-Inspired Methods

1. DISCUSSION
The quality of evolutionary and swarm methods is usually

assessed in terms of their behavior for some known sets of
problem instances known as benchmarks. By running new
metaheuristics for the same benchmark, the community can
compare methods with each other in terms of the quality of
constructed solutions, time performance, stability, etc.

In this paper we argue against the usage of finite bench-
marks to compare metaheuristics with each other. Besides,
we propose an alternative comparison method. Our main
argument is that evolutionary and swarm methods are eas-
ily customizable to make them perfectly fit into any finite
set of inputs. Note that these methods include a handful
of variables and steps where many alternatives can be used.
For instance, in a genetic algorithm, we can set variable val-
ues such as the mutation probability; we can choose among

∗Research supported in part by projects TIN2012-39391-
C04-04 and S2013/ICE-2731.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profi or commercial advantage and that copies bear this notice and the full citation
on the firs page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’15 July 11-15, 2015, Madrid, Spain
c© 2015 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-3488-4/15/07.
DOI: http://dx.doi.org/10.1145/2739482.2764672

dozens of crossover methods proposed in the literature (or
we can propose our own crossover method); or we can even
choose our particular way to represent candidate solutions
into chromosomes, among many other possibilities. In gen-
eral, algorithm designers have an infinite set of parameter
values and alternative sub-methods to vary, and these abun-
dant choices can be used to convert any generic algorithm
into a completely ad-hoc solution to handle a specific set of
finite inputs. That is, the rich sets of algorithm parameters
and customizable steps and sub-steps of many metaheuris-
tics are expressive enough to let designers subtly convert (in
an aware or unaware manner) any generic metaheuristic into
an algorithm specifically tuned to efficiently deal with some
given finite set of inputs –although it can be very inefficient
to handle other inputs.

In other areas like machine learning, it is common to
clearly separate the instances used during the training pro-
cess from the instances used to asses the quality of the re-
sults. However, in the optimization area it is very common
to use the same benchmark for both steps. This choice is
known to increase the risk of over-fitting [2, 3] to a very
specific input. Thus, a metaheuristic can be over special-
ized for a specific set of instances by over-tuning it [1]. We
argue that over-tuning not only may break the performance
balance among inputs by favoring some specific inputs over
others. We think that it also invalidates comparisons with
known benchmarks as a reliable scientific method for per-
formance assessment.

Several researchers have warned against the risks of over-
tuning. However, little has been said about how easy over-
tuning can be if developers push hard to make their al-
gorithms reach good results for specific benchmarks. For
instance, rules could subtly make solutions evolve towards
some predefined values which, in particular, coincide with
the optimal solutions or are near to them. Let us consider
an optimization problem defined in such a way that the op-
timal solution is at point 0̄ = (0, . . . , 0). The arithmetic
of transformation rules could make these rules be slightly
biased towards approaching all components of solutions to
0. In this case, the performance of the method would be
good for optimizing functions having the optimal point at
0̄ or near to it. Let us suppose that our space solutions is
[−d, d]n. If initial solutions are randomly generated in this
space and all points are given the same likeliness to be cho-
sen, then the center of mass of all points will very likely be
near point 0̄. This could make a swarm algorithm such as
Particle Swarm Optimization or an evolutionary algorithm
such as GA be biased towards generating more subsequent

1461



solutions near 0̄ (regardless of any other additional consid-
eration like the fitness). Over-fitting could also be due to
tailoring the solutions representation or the algorithm pa-
rameters for the particular instances under consideration.

In order to fairly compare methods, we propose the fol-
lowing alternative: rather than using a given finite set of
inputs, we consider constructing and using random genera-
tors of inputs for the problem under consideration, and we
study their usage to compare metaheuristics with each other.
Note that using a random input generator also has some
disadvantages. In particular, any random input generator
will necessarily be biased, and comparing the performance
of two metaheuristics could be less straightforward. Despite
these disadvantages, we argue that random input generators
are probably a better choice to provide a fair assessment of
swarm and evolutionary methods.

Let us suppose that we have designed a new method M2

and we wish to compare its performance with that of some
method M1 previously known in the literature. Instead of
assessing M2 by running it for the finite benchmark that
was used in the past to collect the reported results of M1, we
propose comparing them by considering their results for (dif-
ferent) sets of inputs independently generated by the same
random input generator. That is, we do not assess the inter-
est of M2 by running it for the same fix benchmark as that
originally used in the literature to illustrate the performance
of M1. Instead, we show the interest of M2 by running the
same random input generator as that originally used to con-
struct the benchmark used to assess M1 when it was firstly
proposed, and then the new set of instances generated by
that generator is used to evaluate M2 and compare it with
M1. In this way, we could provide a fair comparison between
M1 and M2 in such a way that the benchmark for M2 is not
known in advance.

We could argue that researchers claiming to have followed
it could, in fact, firstly run the random input generator and
next tune up their algorithms for the generated benchmark.
Moreover, researchers could say that their benchmarks were
randomly generated, but in fact they could be manually
designed ones. In order to cope with these problems, we
propose a simple protocol for random benchmark genera-
tion. For many popular problems (3-SAT, TSP, 0/1 Knap-
sack, etc), the corresponding random benchmarks generator
should be hosted in a public web. Each time a researcher
asks for a benchmark in the site, the researcher must provide
his name and the executable program the researcher is in-
tended to use later for solving the instances of the requested
benchmark. Next, the generator produces the benchmark
and records the following information in a public file: name
of the researcher, the program file he is intended to run,
the benchmark returned to the researcher, and the date and
hour of the request. Note that the web does not need to
execute the program of the researcher for the benchmark, it
just needs to publicly store it.

Another difficulty of using random input generators is that
any random input generator will be biased, in the sense that
it will tend to construct inputs of some form with higher
probability than others. Note that this problem is impossi-
ble to avoid, as it is not possible to give all possible inputs the
same probability of being generated, since the set of possible
inputs is generally infinite. However, handling some known
bias over the complete set of possible inputs will provide a
less biased comparison than if we just consider some finite

set of inputs. Note that creating an ad-hoc solution to take
advantage of some probabilistic bias over an infinite domain
is harder than creating an ad-hoc solution for handling some
finite set.

A last difficulty of using random input generators is that
comparing the performance of two methods is less straight-
forward. Let us suppose that we want to compare our method
M2 against some previously known method M1. If we can
trust previous reported experimental results on M1 (as it
should ideally be), it would be preferable focusing on per-
forming new experiments only for M2 and comparing both
results afterwards, as repeating experiments for M1 could be
a very time-consuming task. Note that we cannot use the
same benchmark as that used in the past for M1 because it
would let us over-tune M2. On the contrary, providing a fair
comparison in this case requires running the same genera-
tor used in the past to generate the benchmark for M1, this
time to create the set of instances for M2, and next com-
paring old results for M1 and new results for M2 in terms
of their respective performance for these different sets of in-
puts. Note that both sets could include inputs of different
sizes. We know that this comparison is fair because the
same rule produces the inputs for both methods, although
statistically removing the discriminating effect produced by
using different sets could require both sets to be big. We
may also consider this alternative: we run the generator for
constructing the inputs of M1, and next we require the gen-
erator to produce random inputs of the same size as those
included in the former set, in order to construct the set of
inputs of M2.

We have performed some experiments where we solved
MAX-3SAT instances generated by running different ran-
dom input generators. The results obtained support our
idea that, in practice, the performance of two metaheuristics
M1 and M2 can be fairly compared by running them for two
different sets of instances independently generated by the
same generator. In order to assess the usefulness of using
generators for fairly comparing the performance of different
methods, results for different benchmarks constructed by the
same generators should have similar performance when us-
ing the same configuration in the generator. In particular,
if a new algorithm is to be compared with other algorithms
by using the same generator and configuration, but with dif-
ferent instances, the performance results of each algorithm
should not be significatively influenced by the specific in-
stances under use. Otherwise, the comparison would not
be fair. In our experiments, the deviation is quite small in
most cases. Hence, even though the benchmarks are some-
how random, the results are basically the same provided that
the size of the benchmark is not too small.

2. REFERENCES
[1] M. Birattari. Tuning metaheuristics: a machine

learning perspective. SCI 197. Springer, 2009.

[2] S. Geman, E. Bienenstock, and R. Doursat. Neural
networks and the bias/variance dilemma. Neural
computation, 4(1):1–58, 1992.

[3] V. N. Vapnik. Statistical learning theory. Wiley New
York, 1998.

1462




