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ABSTRACT
This paper investigates the frequently observed phenomenon
of stagnation which appears on particle swarm optimization
(PSO). We introduce a measure of significance of single di-
mensions and provide experimental and theoretical evidence
that the classical PSO, even with swarm parameters known
(from the literature) to be good, almost surely does not con-
verge to a local optimum (stagnation) if too few particles
are used. Stagnation is an undesirable property of PSO.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—heuristic methods
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1. INTRODUCTION
Particle swarm optimization (PSO), is a popular nature-

inspired meta-heuristic for solving continuous optimization
problems. The popularity of the PSO framework is due to
the fact that it shows a good tradeoff between simplicity and
quality of the results.

However, during the execution of the PSO one encounters
stagnation, i. e., the particles converge to a solution which is
no local optimum. To track such stagnation, we introduce a
stagnation measure, which is a multidimensional extension
to the potential introduced in [4, 5]. A sketch of the devel-
oped model is presented, which provides sufficient insights
to prove that PSO stagnates almost surely. [3] supplies the
full version of this paper with more detailed definitions, as-
sumptions, theorems, proofs and experiments.

2. STAGNATION IN PSO
Definition 1 (Classical PSO process) A swarm of N
particles moves through the D-dimensional search space IRD.
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Let f : IRD → IR be the objective function. At each time
t ∈ IN, each particle n has a position Xn

t ∈ IRD, a velocity
V n
t ∈ IRD and a local attractor Ln

t ∈ IRD, the best position
particle n has visited until time t. Additionally, the swarm
shares its global attractor Gn

t ∈ IRD, storing the best position
of any particle until time t and (as attractors are updated
iteratively) the first n− 1 particles at time t+ 1. For t > 0,
1 ≤ n ≤ N the positions and velocities are determined by
the following movement equations:

V n
t+1 :=χ · V n

t + c1 · rnt � (Ln
t −Xn

t ) + c2 · snt � (Gn
t −Xn

t )

Xn
t+1 :=Xn

t + V n
t+1.

χ, c1 and c2 are positive constants called the fixed parame-
ters of the swarm and rnt , snt are uniformly distributed over
[0, 1]D and independent. � denotes the item-wise product of
vectors. We write At for the natural filtration of the process.

For every step the stagnation measure is a D-dimensional
vector of potentials. It is intended that the greater the value
of such a potential for a single dimension is, the greater is
the portion of the change in the function value which is
due to the movement in that dimension. Furthermore, the
logarithmic potential is defined, which compares the impact
of a specific dimension with the maximal impact along all
dimensions. Since the convergence analysis in [2] implies
that the general movement of a converging particle swarm
drops exponentially, a logarithmic scale is used and linear
decrease is expected.

Definition 2 (Potential) Let f be the objective function.

Φ(t, d) := max1≤n≤N |f(Xn
t )− f(X̃n,d

t )| is called the poten-

tial where
(
X̃n,d

t

)
d̃

:= Xn,d̃
t +V n,d̃

t , if d̃ = d,Xn,d̃
t , otherwise.

Ψ(t, d) := log2

(
Φ(t, d)

/
max1≤d̃≤D Φ(t, d̃)

)
is called the log-

arithmic potential and It,d := Ψ(t + 1, d)−Ψ(t, d) is called
increment of dimension d.

Here only sphere function fsph(x) :=
∑D

i=1 x
2
i is presented

(in [3], we study more functions). We use good swarm pa-
rameters χ = 0.72984 and c1 = c2 = 1.496172, as pro-
posed in [1]. To receive reliable results, the PSO is sim-
ulated with at least 2 000 bits precision for the mantissa,
because with double precision soon all positions in single di-
mensions evaluate to the same value and the swarm stops
moving in that dimensions. In Fig. 1 the logarithmic poten-
tial of some dimensions decreases (approximately) linearly,
while the global attractor in these dimensions hardly im-
proves (stagnation). Such periods of time, when stagnation
occurs, are captured by the following definition.
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(a) Logarithmic potential Ψ (b) log2 |G
1,d
t |

Figure 1: (a) Ψ(t, d), (b) log2 |G
1,d
t | on fsph, D = 10, N = 3;

each line represents a single dimension

Definition 3 ((N0, c0, cs)-Stagnation phase) Let
N0 < D be a positive integer constant and c0 ≤ cs < 0
negative constants. We define the random set S(t1, t2) :=
{d : Ψ(t1, d) ≤ c0 ∧ maxt1≤t≤t2 Ψ(t, d) ≤ cs} and stopping
times β−1 := 0 and inductively for all i ≥ 0 αi := inf{t ≥
βi−1 : |S(t, t)| ≥ N0}, βi := inf{t ≥ αi : |S(αi, t)| < N0}.
αi defines the start and βi defines the end of the i’th (N0,
c0, cs)-stagnation phase, if the values are finite. A dimen-
sion d is called stagnating at time t if there is an i such that
αi ≤ t < βi and d ∈ S(αi, t).

Informally: During a stagnation phase there are at least N0

dimensions which stay insignificant. As the logarithmic po-
tential decreases linearly (Figure 1) a model with indepen-
dent increments is reasonable. The behavior of logarithmic
potential in stagnating dimensions is very similar. Therefore
in our model the increments are composed by independent
base increments, which are equal for all dimensions, and in-
dependent dimension dependent increments. The following
assumption describes a simplified version of the model. For
a more refined model using weaker assumptions see [3].

Assumption 1 (Separation of logarithmic potential)
It is assumed that for objective functions f there exist N0, c0,
cs as in Definition 3, (Γ,Θ) two random probability distribu-
tions on IR, random variables (Bt)t∈IN, which will be called
base increments, and (Jt,d)t∈IN,d≤D, which will be called di-
mension dependent increments, such that for all t ∈ IN and
d ≤ D Bt, Jt,d are At+1-measurable, Bt, Jt,1, . . ., Jt,D
are independent of At and of each other, Bt has distribu-
tion Γ and Jt,d has distribution Θ, E[J0,0] = 0, E[B0] < 0,
E[(J0,0)k] and E[(B0)k] exist and are finite for all 1 ≤ k ≤ 6
and if d is stagnating at time t then the increments of di-
mension d fulfill the equation It,d = Bt + Jt,d

In this model we can prove the following theorem:

Theorem 1 A (N0, c0, cs)-stagnation phase does, with pos-
itive probability, never end.

As a consequence there is a time T , from which on the swarm
infinitely stagnates, if the expected waiting time for a stag-
nation phase is finite. For the proof of this theorem we
mainly need that the sixth central moments of sums of t
consecutive increments increase only as O(t3), which is sup-
plied by the assumed independence, but also experiments
confirm that property. As one can see in Fig. 1, there is no
improvement in stagnating dimensions, because they have

Figure 2: Ψ(t, d) on fsph, D = 10, N = 2; c0 = −40,
cs = −20, N0 = 7; each line represents a single dimension

insignificant influence on the swarm. If dimensions stag-
nate during long periods of time, there is no reason for any
specific position in that dimension to have positive proba-
bility (measure theoretical sense), which result in a further
assumption on the model.

Assumption 2 (Insignificance of stagn. dim.) If a stag-
nation phase does not end, then dimensions which stagnate
through the whole phase do not converge to any specific point
with positive probability.

With this assumption we can prove the final theorem, which
proves that PSO stagnates:

Theorem 2 If the swarm converges almost surely, the ob-
jective function f has only a countable number of local op-
tima and for all i with P(βi−1 < ∞) > 0, the expectation
E[αi − βi−1 | βi−1 <∞] ≤ T for some constant T , then the
swarm converges not to a local optimum, almost surely.

The bounded expectation in this theorem only specifies that
the expected time from the end of a stagnation phase to the
start of the next stagnation phase is bounded. Fig. 2 is
an illustration how logarithmic potentials develope in the
beginning, where stagnation phases are marked with a gray
background.

3. REFERENCES
[1] M. Clerc and J. Kennedy. The particle swarm –

explosion, stability, and convergence in a
multidimensional complex space. IEEE Transactions on
Evolutionary Computation, 6:58–73, 2002.

[2] M. Jiang, Y. P. Luo, and S. Y. Yang. Particle swarm
optimization – stochastic trajectory analysis and
parameter selection. In F. T. S. Chan and M. K.
Tiwari, editors, Swarm Intelligence – Focus on Ant and
Particle Swarm Optimization, chapter 17, pages
179–198. I-TECH Education and Publishing, Vienna,
2007.

[3] A. Raß, M. Schmitt, and R. Wanka. Explanation of
stagnation at points that are not local optima in
particle swarm optimization by potential analysis.
arXiv, abs/1504.08241, 2015.

[4] M. Schmitt and R. Wanka. Particle swarm optimization
almost surely finds local optima. In Proc. 15th Genetic
and Evolutionary Computation Conference (GECCO),
pages 1629–1636, 2013.

[5] M. Schmitt and R. Wanka. Particle swarm optimization
almost surely finds local optima. Theoretical Computer
Science, 561:57–72, 2015.

1464




