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ABSTRACT 
It is well-known that faults affecting an electronic device may 
compromise its correct functionality, and industries have to check 
that their devices are fault-free before selling them. In case of a 
processor core, this task may be accomplished by running 
specially written "test" programs. In industrial embedded 
applications, however, shrinking such programs is strictly 
required. The hard problems of generating and code-optimizing 
test programs are tackled in this paper by exploiting an 
evolutionary approach. 

Categories and Subject Descriptors 
B.7.1 [Integrated Circuits]: Types and Design Styles – 
microprocessors and microcomputers; B.8.1 [Performance and 
Reliability]: Reliability, Testing, and Fault-Tolerance; D.3.4 
[Programming Languages]: Processors – code generation.  

General Terms 
Algorithms, Reliability. 

Keywords 
Software-Based Self-Test; Testing, Evolutionary Computation. 

1. INTRODUCTION 
Reliability of embedded systems is becoming a fundamental 
requirement, due to the fact that these devices are more and more 
often included in safety-critical applications. System integrity is 
checked by extra hardware, such as parity errors in memories, or 
instruments reporting hardware errors to the operating systems; 
alternatively, periodical self-test phases are performed in software 
by means of special test programs. Processor testing through the 
test programs execution is not a new strategy, in fact, its 
introduction dates back to 1980 [1], and it is usually referred to as 
Software-Based Self-Test (SBST). SBST techniques are based on 
the execution of test programs allocated in memory, collecting 
results obtained at the end of the run and comparing them with the 
expected signature. Since the periodic testing procedures need to 
coexist with the user applications, new standards, (i.e., ISO 26262 
for automotive, and DO-254 for avionics) specify constraints 
regarding execution time, memory occupation, test frequency, and 
test coverage. A survey of the most important SBST techniques 

can be found in [2]. Evolutionary algorithms were already used in 
several works, aiming to the generation of high-quality test 
programs. Since 2000, the possibility to evolve assembly 
programs was exploited for microprocessor design validation [3] 
and microprocessor post-silicon validation [4]. Genetic 
Programming was also used for the automatic compaction of test 
programs [5][6]. 

This paper presents evolutionary approaches for generating 
microprocessor test programs, and for code-optimizing them. 
Moreover, the code-optimization process is applicable to existing 
test programs. 

2. PROPOSED APPROACH 
A test program is composed of assembly instructions compliant 
with the microprocessor’s Instruction Set Architecture (ISA). The 
proposed approach for generating test programs exploits the 
evolutionary optimizer called μGP (MicroGP) [7]. The user is in 
charge of creating the constraint library for μGP, which defines 
the characteristics of compliant individuals.  

The definition of the microprocessor’s ISA is defined and 
bounded in the μGP constraint library; then, the framework using 
this is able to create syntactically correct test programs. These 
programs represent the population individuals, that are evaluated 
to get its fitness value. The evaluation process involves different 
steps:  program compilation, simulation, and fault simulation. The 
fault simulation process consists on running the test program 
while injecting the processor faults, in order to observe 
differences in the processor behavior compared to the golden run. 
Every time the two behaviors are different, the fault is considered 
as detected. At the end of the fault simulation, the total amount of 
detected faults is used as fitness value. 

During the first step of the evolution, a random population of 
individuals (i.e., test programs) is created; afterwards, applying 
the typical operators of mutation and recombination, new 
individuals are generated and evaluated; according to the fitness 
value, the best individuals are maintained in the population, while 
the others are discarded. At the end of the evolution, the best 
individual in the population is not yet optimized in terms of 
execution time or memory occupation, even if its fault coverage is 
as high as expected. A further process is then required to compact 
the program. Since it may be very hard to identify redundant 
instructions by means of code inspection, evolutionary 
computation may be suitable for this purpose. 

The key-point of the compaction strategy is to identify the 
building blocks of the original test program, i.e., only one or a set 
of assembly instructions, and try to eliminate some parts inside 
the building blocks that are considered as redundant. Each 
building block is provided with a weight that indicates the 
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probability to be removed from the test program; this parameter 
allows the test engineer to identify critical instructions and to 
assign them low weights. According to the weights, the 
evolutionary framework (based on μGP) generates the individuals 
represented by a string of bits, where each bit indicates whether 
the building block of the original test program must be kept or not 
in the final programs. During the second optimization run, the 
fitness function is composed of two parameters: since the 
optimized test programs should maintain the same goodness in 
detecting faults, the first parameter is the Saturated Fault 
Coverage (FCs%), which saturates to the fault coverage value of 
the original test program, with a given tolerance (e.g., 99% of the 
original value). The second parameter instead, depends on the 
optimization goal: for example, the number of removed building 
blocks that may positively impact the memory occupation. During 
the evolution, an individual composed of all the building blocks is 
inserted within the initial random population. Thus, it was 
possible to start the process with one candidate solution already 
yielding the desired primary goal. 

3. CASE STUDY 
The proposed approaches were applied to the academic processor 
miniMIPS [8], which includes a 5-stage pipeline; it was 
synthesized with Synopsys Design Compiler targeting an in-house 
developed library; the gate-level net-list contained 16,303 gates 
and 1,967 flip-flops, corresponding to 115,508 stuck-at faults. 
Two modules of the microprocessor were used as case studies: the 
decode unit (7,502 stuck-at faults), which interprets the instruction 
opcodes, and the forwarding and interlock unit (3,738 stuck-at 
faults), a hardware solution to deal with data hazards. The fitness 
values required by the evolutionary optimizer μGP were 
calculated resorting to the logic simulator Mentor Modelsim and 
the fault simulator Synopsys TetraMAX. Experiments were 
executed on a workstation based on 2 Intel Xeon E5450 CPUs; on 
this machine, the evaluation of an individual required about 6 - 12 
seconds; the experiments were parallelized on 8 cores. The same 
number of individuals (10 thousands) was generated and 
evaluated for all the experiments, each one lasting between 5 to 10 
hours depending on the test programs length. 

Table 1. Test programs code-optimization results. 

Two experiments were performed aiming at maximizing the fault 
coverage. All the assembly instructions of the miniMIPS were 
defined in the μGP’s constraint library. As reported in Figure 1, 
the initial fault coverage on the decode unit was enhanced from a 
very low value (less than 40% of detected faults) up to the final 
value of 79.6%, while on the forwarding unit the optimization 
process brings up to the final value of 86.6%. 

Later, two code-optimization experiments were performed on the 
test programs generated in the first phase, so that a subset of 
instructions was eliminated. The programs were fault-simulated 
by targeting the faults of the modules under consideration. It was 
possible to obtain a memory compaction of about 15% for the 
forwarding unit, without fault loss; better results (almost 30% of 
compaction) were obtained on the decode unit, but in this case 1% 
of fault coverage loss was tolerated. The effectiveness of the 
code-optimization was also tested on an existing suite of test 
programs, developed by the authors in previous works. The fault 

coverage values of the selected test programs were 77.2% on the 
decode unit and 86.7% on the forwarding unit. The code-
optimized test program for the forwarding unit was half the size of 
the original one, without fault loss; a tolerance of 1% of fault 
coverage loss brought to a better compaction ratio (70%) on the 
decode unit (Table 1). 

 
Figure 1. Fault coverage trends during the experiments. 

4. CONCLUSIONS 
The paper has tacked the complex problem of testing a 
microprocessor by means of a specialized suite of test programs. 
Since memory and timing issues are relevant in embedded 
systems, code-optimization of such programs represents a harder 
problem; it has been shown how evolutionary computation is 
suitable in this case. The proposed approach resorts on a 
framework based on the evolutionary optimizer μGP, for 
generating, maximizing the fault coverage, and compacting test 
programs. The same framework has been used also for optimize 
existing test programs, showing that a certain evidence of 
redundant instructions existed; the test programs have been 
compacted up to 70% with a negligible loss of fault coverage. 
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Decode Unit Forwarding Unit 

FC% #Instr. FC% #Instr. 
New 

generated 
programs 

Before optim. 79.6 447 86.6 456 

After optim. 78.8 325 86.6 383 

Existing 
programs 

Before optim. 77.2 258 86.7 243 
After optim. 76.5 75 86.7 131 
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