
Exploiting Evolutionary Computation in an Industrial Flow
for the Development of Code-Optimized Microprocessor

Test Programs
Riccardo Cantoro, Marco Gaudesi, Ernesto Sanchez, Giovanni Squillero

Politecnico di Torino
Corso Duca degli Abruzzi 24

10129 Torino, Italy
{riccardo.cantoro, marco.gaudesi, ernesto.sanchez, giovanni.squillero}@polito.it

ABSTRACT
It is well-known that faults affecting an electronic device may
compromise its correct functionality, and industries have to check
that their devices are fault-free before selling them. In case of a
processor core, this task may be accomplished by running
specially written "test" programs. In industrial embedded
applications, however, shrinking such programs is strictly
required. The hard problems of generating and code-optimizing
test programs are tackled in this paper by exploiting an
evolutionary approach.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles –
microprocessors and microcomputers; B.8.1 [Performance and
Reliability]: Reliability, Testing, and Fault-Tolerance; D.3.4
[Programming Languages]: Processors – code generation.

General Terms
Algorithms, Reliability.

Keywords
Software-Based Self-Test; Testing, Evolutionary Computation.

1. INTRODUCTION
Reliability of embedded systems is becoming a fundamental
requirement, due to the fact that these devices are more and more
often included in safety-critical applications. System integrity is
checked by extra hardware, such as parity errors in memories, or
instruments reporting hardware errors to the operating systems;
alternatively, periodical self-test phases are performed in software
by means of special test programs. Processor testing through the
test programs execution is not a new strategy, in fact, its
introduction dates back to 1980 [1], and it is usually referred to as
Software-Based Self-Test (SBST). SBST techniques are based on
the execution of test programs allocated in memory, collecting
results obtained at the end of the run and comparing them with the
expected signature. Since the periodic testing procedures need to
coexist with the user applications, new standards, (i.e., ISO 26262
for automotive, and DO-254 for avionics) specify constraints
regarding execution time, memory occupation, test frequency, and
test coverage. A survey of the most important SBST techniques

can be found in [2]. Evolutionary algorithms were already used in
several works, aiming to the generation of high-quality test
programs. Since 2000, the possibility to evolve assembly
programs was exploited for microprocessor design validation [3]
and microprocessor post-silicon validation [4]. Genetic
Programming was also used for the automatic compaction of test
programs [5][6].

This paper presents evolutionary approaches for generating
microprocessor test programs, and for code-optimizing them.
Moreover, the code-optimization process is applicable to existing
test programs.

2. PROPOSED APPROACH
A test program is composed of assembly instructions compliant
with the microprocessor’s Instruction Set Architecture (ISA). The
proposed approach for generating test programs exploits the
evolutionary optimizer called μGP (MicroGP) [7]. The user is in
charge of creating the constraint library for μGP, which defines
the characteristics of compliant individuals.

The definition of the microprocessor’s ISA is defined and
bounded in the μGP constraint library; then, the framework using
this is able to create syntactically correct test programs. These
programs represent the population individuals, that are evaluated
to get its fitness value. The evaluation process involves different
steps: program compilation, simulation, and fault simulation. The
fault simulation process consists on running the test program
while injecting the processor faults, in order to observe
differences in the processor behavior compared to the golden run.
Every time the two behaviors are different, the fault is considered
as detected. At the end of the fault simulation, the total amount of
detected faults is used as fitness value.

During the first step of the evolution, a random population of
individuals (i.e., test programs) is created; afterwards, applying
the typical operators of mutation and recombination, new
individuals are generated and evaluated; according to the fitness
value, the best individuals are maintained in the population, while
the others are discarded. At the end of the evolution, the best
individual in the population is not yet optimized in terms of
execution time or memory occupation, even if its fault coverage is
as high as expected. A further process is then required to compact
the program. Since it may be very hard to identify redundant
instructions by means of code inspection, evolutionary
computation may be suitable for this purpose.

The key-point of the compaction strategy is to identify the
building blocks of the original test program, i.e., only one or a set
of assembly instructions, and try to eliminate some parts inside
the building blocks that are considered as redundant. Each
building block is provided with a weight that indicates the

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
Owner/Author.
Copyright is held by the owner/author(s).
GECCO'15 Companion, July 11-15, 2015, Madrid, Spain
ACM 978-1-4503-3488-4/15/07.
http://dx.doi.org/10.1145/2739482.2764673

1465

probability to be removed from the test program; this parameter
allows the test engineer to identify critical instructions and to
assign them low weights. According to the weights, the
evolutionary framework (based on μGP) generates the individuals
represented by a string of bits, where each bit indicates whether
the building block of the original test program must be kept or not
in the final programs. During the second optimization run, the
fitness function is composed of two parameters: since the
optimized test programs should maintain the same goodness in
detecting faults, the first parameter is the Saturated Fault
Coverage (FCs%), which saturates to the fault coverage value of
the original test program, with a given tolerance (e.g., 99% of the
original value). The second parameter instead, depends on the
optimization goal: for example, the number of removed building
blocks that may positively impact the memory occupation. During
the evolution, an individual composed of all the building blocks is
inserted within the initial random population. Thus, it was
possible to start the process with one candidate solution already
yielding the desired primary goal.

3. CASE STUDY
The proposed approaches were applied to the academic processor
miniMIPS [8], which includes a 5-stage pipeline; it was
synthesized with Synopsys Design Compiler targeting an in-house
developed library; the gate-level net-list contained 16,303 gates
and 1,967 flip-flops, corresponding to 115,508 stuck-at faults.
Two modules of the microprocessor were used as case studies: the
decode unit (7,502 stuck-at faults), which interprets the instruction
opcodes, and the forwarding and interlock unit (3,738 stuck-at
faults), a hardware solution to deal with data hazards. The fitness
values required by the evolutionary optimizer μGP were
calculated resorting to the logic simulator Mentor Modelsim and
the fault simulator Synopsys TetraMAX. Experiments were
executed on a workstation based on 2 Intel Xeon E5450 CPUs; on
this machine, the evaluation of an individual required about 6 - 12
seconds; the experiments were parallelized on 8 cores. The same
number of individuals (10 thousands) was generated and
evaluated for all the experiments, each one lasting between 5 to 10
hours depending on the test programs length.

Table 1. Test programs code-optimization results.

Two experiments were performed aiming at maximizing the fault
coverage. All the assembly instructions of the miniMIPS were
defined in the μGP’s constraint library. As reported in Figure 1,
the initial fault coverage on the decode unit was enhanced from a
very low value (less than 40% of detected faults) up to the final
value of 79.6%, while on the forwarding unit the optimization
process brings up to the final value of 86.6%.

Later, two code-optimization experiments were performed on the
test programs generated in the first phase, so that a subset of
instructions was eliminated. The programs were fault-simulated
by targeting the faults of the modules under consideration. It was
possible to obtain a memory compaction of about 15% for the
forwarding unit, without fault loss; better results (almost 30% of
compaction) were obtained on the decode unit, but in this case 1%
of fault coverage loss was tolerated. The effectiveness of the
code-optimization was also tested on an existing suite of test
programs, developed by the authors in previous works. The fault

coverage values of the selected test programs were 77.2% on the
decode unit and 86.7% on the forwarding unit. The code-
optimized test program for the forwarding unit was half the size of
the original one, without fault loss; a tolerance of 1% of fault
coverage loss brought to a better compaction ratio (70%) on the
decode unit (Table 1).

Figure 1. Fault coverage trends during the experiments.

4. CONCLUSIONS
The paper has tacked the complex problem of testing a
microprocessor by means of a specialized suite of test programs.
Since memory and timing issues are relevant in embedded
systems, code-optimization of such programs represents a harder
problem; it has been shown how evolutionary computation is
suitable in this case. The proposed approach resorts on a
framework based on the evolutionary optimizer μGP, for
generating, maximizing the fault coverage, and compacting test
programs. The same framework has been used also for optimize
existing test programs, showing that a certain evidence of
redundant instructions existed; the test programs have been
compacted up to 70% with a negligible loss of fault coverage.

REFERENCES
[1] S.M. Thatte and J. A. Abraham, Test Generation for

Microprocessors, IEEE Trans. on Computers, vol. 29, n. 6,
pp. 429-441, 1980.

[2] M. Psarakis, D. Gizopoulos, E. Sanchez and M. S. Reorda,
Microprocessor Software-Based Self-Testing, IEEE DESIGN
& TEST OF COMPUTERS, vol. 27, n. 3, pp. 4-19, 2010.

[3] E. Sanchez and G. Squillero, Evolutionary Techniques
Applied to Hardware Optimization Problems: Test and
Verification of Advanced Processors, in Studies on
Computational Intelligence, Vol 66, Advances in
Evolutionary Computing for System Design, V. P. a. D. S.
Lakhmi C. Jain, Ed., Springer, 2007, pp. 83-106.

[4] E. Sanchez, M. S. Reorda, G. Squillero and W. Lindsay,
Automatic Test Programs Generation Driven by Internal
Performance Counters, in Microprocessor Test and
Verification, 2004.

[5] E. Sanchez, M. Schillaci and G. Squillero, Enhanced Test
Program Compaction Using Genetic Programming, IEEE
Congress on Evolutionary Computation, 2006, pp-865-870.

[6] R. Cantoro, M. Gaudesi, E. Sanchez, P. Schiavone and G.
Squillero, An Evolutionary Approach for Test Programs
Compaction, Latin American Test Symposium, 2015.

[7] E. Sanchez, M. Schillaci, G. Squillero, Evolutionary
Optimization: the μGP toolkit, Springer, 2011.

[8] http://opencores.org/project,minimips

Decode Unit Forwarding Unit

FC% #Instr. FC% #Instr.
New

generated
programs

Before optim. 79.6 447 86.6 456

After optim. 78.8 325 86.6 383

Existing
programs

Before optim. 77.2 258 86.7 243
After optim. 76.5 75 86.7 131

1466

