
A Collaborative Strategy to Reduce Initial Setup
Requirements of ParamILS using EvoCa

María-Cristina Riff∗
Maria-Cristina.Riff@inf.utfsm.cl

Elizabeth Montero†
Elizabeth.Montero@inf.utfsm.cl

Universidad Técnica Federico Santa María
Avenida España 1680

Valparaíso, Chile

ABSTRACT
ParamILS is a sophisticated tuning method able to provide
valuable information for designers and manage conditional
parameters. EvoCa is a recently proposed tuner which does
not require a fine definition of the initial parameters val-
ues. In this work, we propose a collaborative framework
between EvoCa and ParamILS to generate quality calibra-
tions without requiring expertise to define a proper initial
set-up. Results show that our collaborative approach is able
to find good calibrations.

1. INTRODUCTION
Tuning methods have shown being effective tools for search-

ing the space of parameter values of meta-heuristic algo-
rithms. Several different categories of tuners can be clearly
identified nowadays: Sampling methods [1, 5], model-based
methods [3], screening methods [2] and meta evolutionary
algorithms [4, 6].

In this work we focus on Meta evolutionary algorithms
that consider the tuning problem as an optimization prob-
lem. ParamILS [4] is an iterated local search algorithm that
works by searching for better parameter calibrations in the
neighborhood of the current one. FocusedILS version of
ParamILS uses a comparison method able to increase the
number of executions for evaluating parameter calibrations
when a more accurate comparison is required. EvoCa [6]
is an evolutionary algorithm. Population size in EvoCa is
computed considering the number of parameters and their
domain sizes. The key idea is to include all the values al-
lowed for each parameter, in an independent way, on the first
population. EvoCa also uses two transformation operators:
a wheel-crossover and a hill-climbing-first-improvement mu-
tation operator.

∗Supported by Fondecyt Project no. 1151456. Partially sup-
ported by the Centro Cient́ıfico Tecnológico de Valparáıso (CCT-
Val) No. FB0821
†Supported by Postdoctoral Fondecyt Project no. 3130754

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’15 July 11-15, 2015, Madrid, Spain
c© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3488-4/15/07.

DOI: http://dx.doi.org/10.1145/2739482.2764696

Most research related to tuning methods has been fo-
cused on the way the parameter calibrations are generated,
searched or analyzed. Experimental setups are presented
in order to obtain the best of each tuner, but little atten-
tion is paid in how those tuning scenarios should be de-
fined without expert knowledge about the target algorithm.
With this work we address the ongoing work proposed by
ParamILS’authors “To enhance ParamILS with dedicated
methods for dealing with continuous parameters that do not
require discretization by the user” [4]. The contribution of
this paper is a collaborative strategy that uses EvoCa to
define the initial set-up for ParamILS.

2. TUNING PROBLEM
Formally, the tuning problem can be defined as follows:

Definition 2.1. Given a metaheuristic code M , an in-
stance of the tuning problems consists in a 4-tuple P =
(M,Θ,Π, κmax), where Θ is the configurations space for M .
Π is the set of input problem instances, g(θ,Π) is a func-
tion that computes the expected gain (e.g., the quality of the
solutions) of running M using instance π ∈ Π when using
configuration θ. κmax is a time out after which all instances
of M will be terminated if they are still running.
Any configuration θ ∈ Θ is a candidate configuration of P .
The gain of a candidate configuration θ is given by:

GP (θ) = meanπ∈Π(g(θ, π)) (1)

ParamILS uses iterative local search for focusing its search
in some regions of the configurations space. Moreover, it is
able to manage conditional parameters discarding irrelevant
search and it has been shown to be very effective on tuning
algorithms having many parameters as well as for configu-
rating algorithms.

3. COLLABORATION
In order to use ParamILS the designer must discretize

target algorithm’s parameter configuration space Θ defining
a subset Θd ≤ Θ, thus ParamILS focus its search on the set
Θd. We have observed that the better is defined Θd on the
configurations search space, the more efficiently ParamILS
can determine the good values for the parameters.

In general, the Θ space can not be completely visited. The
definition of the subset Θd seems to be crucial for the per-
formance of ParamILS. Because EvoCa is a tuner that does
not require an initial discretization of the configurations and
it has shown be effective to find parameter values for meta-
heuristics, we propose a two-level algorithm where EvoCa is

1467



used in the first level to define the set Θd. The evaluation of
the performance of the algorithm using different parameters
values is used by EvoCa until κmax condition. Given the
set Θd of configurations obtained by EvoCA our collective
strategy will give the control to ParamILS to continue the
calibration until κmax2 condition. The pseudocode of our
strategy is shown in algorithm 1.

Algorithm 1: EvoCa+ParamILS

1 GenerateInitialPopulation (P);
2 while (κmax condition is not met) do
3 child ← Wheel-cross(P);
4 Evaluate (child,R);
5 ReplaceWorst(P,child);
6 mutated child ← Mutate(child);
7 Evaluate (mutated child, R);
8 if mutated child is better than child then
9 ReplaceSecondWorst(P,mutated child);

10 end

11 end
/*Stop using EvoCa --- Start using ParamILS */

12 definition file←WriteParamILSSetUpFile(P);
13 ParamILS(definition file);

3.1 Experimental Setup
For our experiments we use the ACOTSP implementa-

tion of Ant Colony Optimization algorithms for the Travel-
ing Salesman Problem. ACOTSP has 11 parameters: three
categorical, four integer and four continuous. Categorical
parameter “algorithm” determines the ACO used to solve
the problem. Continuous parameters α, β and ρ are typi-
cal parameters required by all the ACO algorithms. Most
of the remaining parameters are conditionals on the ACO
algorithm used. The quality of each ACOTSP execution is
measured as the relative distance to the optimum.
In our scenarios, we consider as training test ten random
Euclidean TSP instances of each 1000, 1500, 2000, 2500 and
3000 cities. The test set is composed of 250 TSP instances
(50 instances of each of the previous sizes). A cutoff time of
five seconds per run and a budget of 5000 ACOTSP execu-
tions were fixed.
We analyzed four types of division of the total budget: 25%
of total budget assigned to EvoCa and the remaining 75%
assigned to ParamILS (E+PILS(25%)), 50% to EvoCa and
the remaining 50% to ParamILS, 75% to EvoCa and the
remaining 25% to ParamILS and a special case considering
twice the budget: 100% to EvoCa and 100% to ParamILS.

3.2 Discussion
Graph in figure 1 shows the results obtained. Here it

is possible to observe that the four collaborative schemes
studied show a good quality performance when compared
to all the set-ups of parameter values considered. Results
in table 1 show the Wilcoxon tests comparing these results.
From the tests we can observe that scenario E+PILS(25%)
shows to be the best performing approach.

4. CONCLUSIONS
In this work we have focused our attention on the use

of two well-known tuners: ParamILS and EvoCa. We have
noted that the good choice of the initial points was shown to

be crucial to obtain a good performance. We have proposed

ParamILS1.000 ParamILS100 ParamILS20 ParamILS20VRandom E+PILS (25%) E+PILS (50%) E+PILS (75%) E+PILS (100%)

1

1,5

2

2,5

3

Figure 1: Performance Comparison

Comparison p-value
ParamILS1.000 vs E+PILS (25%) .000
ParamILS1.000 vs E+PILS (50%) .000
ParamILS1.000 vs E+PILS (75%) .000
ParamILS1.000 vs E+PILS (100%) .000
ParamiILS20 vs E+PILS (25%) .011
ParamiILS20 vs E+PILS (50%) .097
ParamiILS20 vs E+PILS (75%) .154
ParamiILS20 vs E+PILS (100%) .123
ParamILS20VRandom vs E+PILS (25%) .007
ParamILS20VRandom vs E+PILS (50%) .330
ParamILS20VRandom vs E+PILS (75%) .522
ParamILS20VRandom vs E+PILS (100%) .277
E+PILS (25%) vs E+PILS (50%) .021
E+PILS (25%) vs E+PILS (75%) .083
E+PILS (25%) vs E+PILS (100%) .070
E+PILS (50%) vs E+PILS (75%) .701
E+PILS (50%) vs E+PILS (100%) .701
E+PILS (75%) vs E+PILS (100%) .784

Table 1: Statistical performance Comparison

a collaboration scheme using EvoCa and ParamILS. Our
collaboration is useful when the user does not have good in-
formation about where are placed the best configurations in
the search space. Results show that using EvoCa in the first
step of the collaboration reduces the configuration’s search
space and allows ParamILS to focus on the most promising
regions. For a future work we study to incorporate mecha-
nisms in EvoCa to manage conditional parameters.

5. REFERENCES
[1] B. Adenso-Dı́az and M. Laguna. Fine-Tuning of

Algorithms Using Fractional Experimental Designs and
Local Search. Operations Research, 54(1):99–114, 2006.

[2] P. Balaprakash, M. Birattari, and T. Stützle.
Improvement strategies for the f-race algorithm:
sampling design and iterative refinement. In 4th
international conference on Hybrid metaheuristics,
pages 108–122, 2007.

[3] T. Bartz-Beielstein, C. Lasarczyk, and M. Preuss.
Sequential parameter optimization. In IEEE Congress
on Evolutionary Computation, pages 773–780. IEEE,
2005.

[4] F. Hutter, H. H. Hoos, K. Leyton-Brown, and
T. Stützle. ParamILS: an automatic algorithm
configuration framework. Journal of Artificial
Intelligence Research, 36:267–306, 2009.

[5] R. Myers and E. R. Hancock. Empirical modelling of
genetic algorithms. Evolutionary Computation,
9(4):461–493, 2001.

[6] M.-C. Riff and E. Montero. A new algorithm for
reducing metaheuristic design effort. In IEEE Congress
on Evolutionary Computation, pages 3283–3290, 2013.

1468




